Printed opto-electronics based on solution processable colloidal semiconductor quantum dots (QDs) can make available a much-needed small footprint, low cost and flexible platform for optical sensing, imaging and spectroscopy in th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NANOLEDS
A Novel Approach to the Fabrication of Nanoscale Light Emitt...
200K€
Cerrado
C-BRIGHT
CarBon nanotube exohedral and endohedral functionalization f...
192K€
Cerrado
blackQD
Optoelectronic of narrow band gap nanocrystals
1M€
Cerrado
Ne2DeM
Creating the new generation of 2D light emitters
1M€
Cerrado
EUIN2015-62411
NANOESTRUCTURAS FOTONICAS PARA DISPOSITIVOS EMISORES DE LUZ...
10K€
Cerrado
PhoLED
Photonic nanostructures for Light Emitting Devices.
158K€
Cerrado
Información proyecto NOMISS
Duración del proyecto: 59 meses
Fecha Inicio: 2022-12-01
Fecha Fin: 2027-11-30
Líder del proyecto
UNIVERSITEIT GENT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Printed opto-electronics based on solution processable colloidal semiconductor quantum dots (QDs) can make available a much-needed small footprint, low cost and flexible platform for optical sensing, imaging and spectroscopy in the technologically relevant short and mid-wave infrared (IR) spectrum (1.5 μm – 5 μm). However, while this revolution took place in the visible spectrum, and is happening at the side of detection for IR light, QD IR light source technology is currently expensive, lacking performance and is based on restricted chemical elements. Moreover, final device assemblies have large footprints, limiting their functionality in consumer devices requiring large scale deployment. In NOMISS, I will therefore explore a route towards ‘printable IR opto-electronics’ by developing a new class of solution-processable QDs based on non-restricted elements with efficient IR emission. I will study both their fundamental IR light-matter interactions, aimed at increasing light emission efficiency, and the possibility to incorporate them with small-footprint photonic integrated circuits (PICs). To this end, I will first extend the bottom-up chemical synthesis of tunable III-V In(As,Sb,P) QDs. Next, I will study their (non-)linear optical properties, using a novel ultrafast and broadband IR optical spectroscopy methodology, in particular focusing on the fundamental questions related to the QD’s organic/inorganic interface and how to optimize spontaneous & stimulated IR emission. Finally, I will develop a framework to combine these materals with silicon based PIC’s to realize cheap & small-footprint IR light sources, in particular optically pumped lasers. After NOMISS, the new cross-disciplinary and high-impact field of 'printable IR opto-electronics' will be available. To meet these high risk challenges, I will lead a multi-disciplinary team with experts in nanochemistry, nanophysics and nanophotonics engineering.