Nanofluidic chips for reproducible cryo-EM sample preparation with picoliter sam...
Nanofluidic chips for reproducible cryo-EM sample preparation with picoliter sample volumes
Cryogenic transmission electron microscopy (cryo-EM) is a technique for high-resolution imaging of radiation-sensitive biological macromolecules under near-native conditions. Cryo-EM sample preparation techniques rely on rapid coo...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EQC2021-006854-P
Sistema de Congelación de Muestras Biológicas a Alta Presión...
404K€
Cerrado
PID2020-117080RB-C51
FUNDAMENTOS MICROSCOPICOS DEL MICROSCOPIO DE FUERZAS ATOMICA...
132K€
Cerrado
CSIC10-4E-377
Microscopio Óptico de Alta Resolución Lateral y Análisis Esp...
102K€
Cerrado
UNEX08-1E-015
PROPUESTA PARA COMPLETAR LA UNIDAD DE MICROSCOPÍA ELECTRÓNIC...
1K€
Cerrado
CSIC13-4E-1913
Adquisición de equipos para el Servicio de Microscopía del C...
933K€
Cerrado
EQC2019-005842-P
Microscopia correlativa óptico-electrónica para dotar la Pla...
323K€
Cerrado
Información proyecto CryoChip
Duración del proyecto: 19 meses
Fecha Inicio: 2022-03-22
Fecha Fin: 2023-10-31
Descripción del proyecto
Cryogenic transmission electron microscopy (cryo-EM) is a technique for high-resolution imaging of radiation-sensitive biological macromolecules under near-native conditions. Cryo-EM sample preparation techniques rely on rapid cooling of an aqueous suspension of biological macromolecules to obtain a thin layer of amorphous ice containing the solute. Problems associated with current implementations are considered a major bottleneck to realizing the full potential of cryo-EM: excessive sample consumption, the difficulty to reproducibly obtain ice conditions suitable for high-resolution imaging and the extensive contact of solute molecules with a large air-water interface result in only a small fraction of the imaged molecules contributing useful information for the final 3D reconstruction. Poor time resolution of these methods furthermore precludes the visualization of dynamic structural changes that provide critical biological insight. In our laboratory we have developed technology to design nanofluidic MEMS devices suitable for cryo-EM imaging. We here propose to explore product development of a nanofluidic chip for reproducible sample preparation with picoliter volumes. The sample is contained in nanochannels formed between membranes of an electron-transparent material, thereby controlling ice thickness and avoiding formation of an air-water-interface. This method has all features to push cryo-EM to new frontiers: it requires minute amounts of sample, robustly provides uniform and customizable thickness gradients across the sampling area at a time resolution that is limited only by the vitrification process itself. Our CryoChip will provide entirely new opportunities for time-resolved cryo-EM imaging and high-throughput applications in structure-based drug design for pharmaceutical industry. We will liaise with an industrial partner experienced in MEMS probe fabrication to explore processoptimization and viability of larger-scale production.