The NanoCTM network will tackle major challenges in the theory of nanoelectronics. Ten internationally-leading European theory-of-condensed-matter groups from nine different countries [including one of Europe’s leading industrial...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2008-02626
DINAMICA ELECTRONICA Y TRANSPORTE DE CARGA Y ESPIN, EN NANOD...
152K€
Cerrado
FIS2016-79464-P
TRANSPORTE ELECTRONICO, TERMICO, Y DE ESPIN CON LA TEORIA DE...
110K€
Cerrado
MAT2011-24331
TRANSPORTE COHERENTE DE CARGA Y ESPIN EN NANODISPOSITIVOS
190K€
Cerrado
SPIDERMAN
Electronic Transport and Spin dynamics through SiGe self ass...
100K€
Cerrado
BIGNSPIN
Bismuth and Graphene Nanostructures for Spintronics
45K€
Cerrado
FJCI-2017-34494
Spin-orbit phenomena in spintronic nanodevices
50K€
Cerrado
Información proyecto NANOCTM
Líder del proyecto
UNIVERSITY OF LANCASTER
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The NanoCTM network will tackle major challenges in the theory of nanoelectronics. Ten internationally-leading European theory-of-condensed-matter groups from nine different countries [including one of Europe’s leading industrial electronics-research groups (QinetiQ)] have joined forces as full participants, combining theoretical expertise in nanowires, quantum dots, carbon-based electronics, and spintronics, along with interaction and proximity effects in small dimensions. Our highly-integrated approach to nanoscale transport will represent a major step towards the realisation of future scalable nanotechnologies and processes. In the longer term, the insights gained will contribute to the fabrication of novel functional nanoscale architectures and their integration into a higher hierarchical level. System parameters such as electric field, light, temperature or chemical reactivity are envisaged as possible drivers of future nanoelectronic devices.