Nano optics on flatland from quantum nanotechnology to nano bio photonics
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, relate...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2013-41184-P
OPTOELECTRONICA DE GAPS (SUB)NANOMETRICOS PLASMONICOS PARA E...
166K€
Cerrado
NanoEP
Enabling Novel Electron Polariton Physics with Nanophotonic...
2M€
Cerrado
LANTERN
Light Atom Interactions in Nanophotonic Structures
257K€
Cerrado
EIN2020-112272
METASUPERFICIES TOPOLOGICAS PARA INTERACCION LUZ-MATERIA EN...
8K€
Cerrado
TIMELIGHT
TIME-Varying Nanophotonics for New Regimes of QED LIGHT-Matt...
2M€
Cerrado
TWISTOPTICS
Twistoptics Manipulating Light Matter Interactions at the N...
2M€
Cerrado
Información proyecto 2DNANOPTICA
Duración del proyecto: 61 meses
Fecha Inicio: 2016-11-23
Fecha Fin: 2021-12-31
Líder del proyecto
Universidad de Oviedo
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores789
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ubiquitous in nature, light-matter interactions are of fundamental importance in science and all optical technologies. Understanding and controlling them has been a long-pursued objective in modern physics. However, so far, related experiments have relied on traditional optical schemes where, owing to the classical diffraction limit, control of optical fields to length scales below the wavelength of light is prevented. Importantly, this limitation impedes to exploit the extraordinary fundamental and scaling potentials of nanoscience and nanotechnology. A solution to concentrate optical fields into sub-diffracting volumes is the excitation of surface polaritons –coupled excitations of photons and mobile/bound charges in metals/polar materials (plasmons/phonons)-. However, their initial promises have been hindered by either strong optical losses or lack of electrical control in metals, and difficulties to fabricate high optical quality nanostructures in polar materials.
With the advent of two-dimensional (2D) materials and their extraordinary optical properties, during the last 2-3 years the visualization of both low-loss and electrically tunable (active) plasmons in graphene and high optical quality phonons in monolayer and multilayer h-BN nanostructures have been demonstrated in the mid-infrared spectral range, thus introducing a very encouraging arena for scientifically ground-breaking discoveries in nano-optics. Inspired by these extraordinary prospects, this ERC project aims to make use of our knowledge and unique expertise in 2D nanoplasmonics, and the recent advances in nanophononics, to establish a technological platform that, including coherent sources, waveguides, routers, and efficient detectors, permits an unprecedented active control and manipulation (at room temperature) of light and light-matter interactions on the nanoscale, thus laying experimentally the foundations of a 2D nano-optics field.