Multivariate Analysis of Big Data in Software Defined Networks
One of the main problems of the Internet is the rapidly growing volume of diverse data. The Future Internet needs new efficient methods to support data management, processing and analysis. The Software Defined Networking (SDN) is...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
e-IRGSP3
e Infrastructure Reflection Group Support Programme 3
1M€
Cerrado
DISC
Distributed storage based on sparse graph codes
186K€
Cerrado
RETHINK big
RETHINK big Roadmap for European Technologies in Hardware a...
3M€
Cerrado
PID2020-113795RB-C33
COMPROMISE: PRIVACIDAD EN MACHINE LEARNING COLABORATIVO Y DI...
136K€
Cerrado
PRISENODE
PRISENODE Privacy and secuRity aware solutIons in SoftwarE...
275K€
Cerrado
EPIKH
Exchange Programme to advance e Infrastructure Know How
1M€
Cerrado
Información proyecto MAD-SDN
Duración del proyecto: 35 meses
Fecha Inicio: 2020-03-25
Fecha Fin: 2023-02-28
Líder del proyecto
UNIVERSIDAD DE GRANADA
No se ha especificado una descripción o un objeto social para esta compañía.
Total investigadores5511
Presupuesto del proyecto
173K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
One of the main problems of the Internet is the rapidly growing volume of diverse data. The Future Internet needs new efficient methods to support data management, processing and analysis. The Software Defined Networking (SDN) is a novel network architecture that overcomes the limitations of traditional networks, separating the control and data planes, and providing programmability capabilities of network functionalities. Yet, modern SDN deployments are difficult to manage and optimize. Big Data analysis techniques can be useful in SDN to identify problems, troubleshoot them and optimize network performance. One promising approach for this is the Multivariate Big Data Analysis (MBDA), which extends multivariate analysis to Big Data sets. However, MBDA has not been applied to SDN yet. During this project, MBDA will be used to detect anomalies and classify network traffic in complex SDN environment. In addition, in order to ensure privacy, MBDA will be extended with Federated Learning, a cutting-edge approach recently developed by Google with application to distributed data analysis problems. This project will be carry out by the experienced researcher (ER) who worked during her PhD thesis on network traffic analysis using advanced statistical methods on time series. The ER will cooperate with the Supervisor who is an expert in the field of multivariate analysis for anomaly detection and optimization of networks, and the principal developer of the MBDA approach.