Multivalent interactions driving RNP dynamics in development and disease
Ribonucleoprotein complexes (RNPs) play many key regulatory roles in development. Moreover, mutations causing cancer or neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), often occur in RNA-binding proteins (...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto RNPdynamics
Duración del proyecto: 69 meses
Fecha Inicio: 2019-12-02
Fecha Fin: 2025-09-30
Líder del proyecto
KEMIJSKI INSTITUT
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ribonucleoprotein complexes (RNPs) play many key regulatory roles in development. Moreover, mutations causing cancer or neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), often occur in RNA-binding proteins (RBPs). These mutations are concentrated in the intrinsically disordered regions (IDRs), which play a central role in the control of RNP assembly and disassembly. RNP dynamics is often driven by multivalent interactions that are mediated by multiple elements within IDRs of RBPs, which can condense the RNP such that it separates from the surrounding liquid through the phenomenon of liquid-liquid phase separation. Transcriptomic insights into the physiological functions of such multivalent RNP assembly are needed to understand their regulation, or deregulation through disease-causing mutations. Here, we will build a framework of experimental and computational methods to study the mechanisms by which the dynamic multivalent interactions drive RNP remodelling, and how such RNP dynamics contributes to cellular transitions in development and disease. The first objective will be to identify the functions of specific RBPs in cell-state transitions during neuronal differentiation, and the mechanisms of IDR-mediated multivalent interactions in these functions. The next objective will be to establish new tools to manipulate RNP assembly through multivalent RNA binding sites and IDRs. Finally, the new insights and tools will be integrated with the goal to fine-tune the RNP assembly of ALS-mutant RBPs, and thereby ameliorate their toxicity.