MULTISPECTRAL INTELLIGENT VISION SYSTEM WITH EMBEDDED LOW POWER NEURAL COMPUTING
"MISEL aims at bringing artificial intelligence to the edge computing (decisions made on-device) through a low-power bio-inspired vision system with multi-spectral sensing and in sensor spatio-temporal neuromorphic processing base...
"MISEL aims at bringing artificial intelligence to the edge computing (decisions made on-device) through a low-power bio-inspired vision system with multi-spectral sensing and in sensor spatio-temporal neuromorphic processing based on complex events. The science-to-technology breakthrough is the heterogeneous integration of a neuromorphic computing scheme featuring three different abstraction levels (cellular, cerebellar and cortex processors) with high-density memory arrays and adaptive photodetector technology for fast operation and energy efficiency. The context-aware, low power and distributed computation paradigm supported by MISEL is promising alternative to the current approach relying on massive-data transfers and large computational resources, e.g., workstations or cloud servers. This answers to the challenges and related scope presented in the Work Programme towards ""more complex, brain mimicking low power systems"" ""exploiting a wider range of biological principles from the hardware level up"" by introducing the human eye like adaptivity with cellular processor and the data fusion, learning, reasoning, and conscious decisions performed by the cortex.
The stand-alone system fabricated in MISEL will be tested on timely and challenging applications such as distinguishing birds from drones through their spatio-temporal flying signature, and scene anomaly detection from a mobile platform. From the technology development and industrialization point of view, MISEL includes the whole value chain: materials research for back-end of line (BEOL) processing-compatible densely-packed ferroelectric non-volatile memories (FeRAMs) and intensity adaptive photodetectors, novel neuromorphic computing algorithms and circuit implementations, and system level benchmarking. This is all in line with the challenge and scope of ""outperforming conventional SoA with relevant metric"" and benchmarking ""challenging end-to-end scenarios of use"" for industrial adaptation.
"ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.