Multi-Sensor Bayesian Data Assimilation for Large-Scale Drought Monitoring Syste...
Multi-Sensor Bayesian Data Assimilation for Large-Scale Drought Monitoring System (MuSe-BDA)
Climate change and anthropogenic modifications are bringing multiple changes in different regions of the world, affecting the patterns of rainfall, evapotranspiration and stored terrestrial water, which will increase the probabili...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2017-82216-R
EL PAPEL DE LA NIEVE EN LA HIDROLOGIA DE LA PENINSULA IBERIC...
230K€
Cerrado
PCIN-2015-243
MEJORA DE LA PREDICCION, ALERTA TEMPRANA Y MITIGACION DE SEQ...
100K€
Cerrado
TED2021-131520B-C21
MODELOS DE BASE FISICA PARA FENOMENOS PRECIPITACION-ESCORREN...
131K€
Cerrado
PTQ-12-05412
Desarrollo de un sistema-prototipo de asimilación y minería...
60K€
Cerrado
TED2021-131131B-I00
ANALISIS Y GESTION INTEGRADA DE DATOS HIDROLOGICOS EN LA CUE...
98K€
Cerrado
PCIN-2015-220
MEJORA DE LA PREDICCION, ALERTA TEMPRANA Y MITIGACION DE SEQ...
200K€
Cerrado
Información proyecto MuSe-BDA
Duración del proyecto: 25 meses
Fecha Inicio: 2022-08-01
Fecha Fin: 2024-09-07
Líder del proyecto
AALBORG UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
231K€
Descripción del proyecto
Climate change and anthropogenic modifications are bringing multiple changes in different regions of the world, affecting the patterns of rainfall, evapotranspiration and stored terrestrial water, which will increase the probability of climate disasters, such as agricultural losses, water scarcity, and famine. Drought monitoring and hydrological early warning system are important tools for water resources management, and they must be further complemented by forecasting facilities that are well integrated with the EU’s Earth Observation data. In this project, based on Forootan and Mehrnegar's expertise, an accurate and efficient, as well as physically and mathematically consistence Bayesian-based Data Assimilation (DA) framework(s) will be developed to integrate the benefits of synergistically available satellite geodetic and Earth Observation (EO) data and the state-of-the-art of hydrological models to better understand and forecast the recent and future spatial-temporal changes in continental water storage and water fluxes. The proposed Multi-Sensor Bayesian Data Assimilation (MuSe-BDA) are unique in terms of flexibility to assimilate various satellite data, and they are computationally efficient.
Building on the effort in MuSe-BDA, this is the first attempt to simultaneously merge multi-land surface models with satellite-derived Surface Soil Moisture (SSM), Surface Water Level (SWL) anomaly from satellite altimetry, Land Surface Temperature (LST) from remote sensing data, and gravity field estimates from GRACE and GRACE-FO missions. The application will be demonstrated in simulating and forecasting episodic large-scale droughts within Europe (north and south) and USA (e.g., California and Texas) covering 2003-onward with an unprecedented spatial resolution of 0.05° (~5 km) at daily temporal rate, which is essential for practical applications such as agricultural early warning and the assimilation of satellite data ensures the compatibility with the real world.