Multiscale poro micromechanics of bone materials with links to biology and medi...
Multiscale poro micromechanics of bone materials with links to biology and medicine
"Modern computational engineering science allows for reliable design of the most breathtaking high-rise buildings, but it has hardly entered the fracture risk assessment of biological structures like bones. Is it only an engineeri...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2013-46641-R
DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y AP...
90K€
Cerrado
TissSpecBoneFEM
Incorporation of multiscale tissue specific properties into...
63K€
Cerrado
BES-2014-068473
DESARROLLO DE MODELOS MICROESTRUCTURALES DE TEJIDO OSEO Y AP...
88K€
Cerrado
DPI2011-26167
MODELADO MULTIESCALA DE TEJIDOS BIOLOGICOS BLANDOS Y FIBROSO...
25K€
Cerrado
EXTREME
EXTRacEllular matrix MEchanochemistry a solid state NMR app...
3M€
Cerrado
PID2020-118920RB-I00
EVALUACION DEL RIESGO DE FRACTURA OSEA CON PREVALENCIA DE OS...
101K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Modern computational engineering science allows for reliable design of the most breathtaking high-rise buildings, but it has hardly entered the fracture risk assessment of biological structures like bones. Is it only an engineering scientist's dream to decipher mathematically the origins and the evolution of the astonishingly varying mechanical properties of hierarchical biological materials? Not quite: By means of micromechanical theories, we could recently show in a quantitative fashion how ""universal"" elementary building blocks (being independent of tissue type, species, age, or anatomical location) govern the elastic properties of bone materials across the entire vertebrate kingdom, from the super-molecular to the centimetre scale. Now is the time to drive forward these developments beyond elasticity, striving for scientific breakthroughs in multiscale bone strength. Through novel, experimentally validated micromechanical theories, we will aim at predicting tissue-specific inelastic
properties of bone materials, from the ""universal"" mechanical properties of the nanoscaled elementary components (hydroxyapatite, collagen, water), their tissue-specific dosages, and the ""universal"" organizational patterns they build up. Moreover, we will extend cell population models of contemporary systems biology, towards biomineralization kinetics,in
order to quantify evolutions of bone mass and composition in living organisms. When using these evolutions as input for the aforementioned micromechanics models, the latter will predict the mechanical implications of biological processes. This will open unprecedented avenues in bone disease therapies, including patient-specific bone fracture risk assessment relying on micromechanics-based Finite Element analyses."