Information storage technology is essentially based on nanostructured magnetic materials. Considerable research effort is aimed at increasing the density of stored information and this generally requires increasingly sophisticated...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-115159GB-I00
ELEMENTOS MAGNETICOS NANOESTRUCTURADOS PARA APLICACIONES NEU...
182K€
Cerrado
MAGicSky
Magnetic Skyrmions for Future Nanospintronic Devices
3M€
Cerrado
PID2020-117024GB-C42
CONMUTACION MAGNETICA EN NANOESTRUCTURAS BAJO LA INFLUENCIA...
138K€
Cerrado
OP2M
Optical Probe and Manipulation of Magnetization at the nanom...
165K€
Cerrado
3DMAGNANOW
Fabrication of three dimensional magnetic nanowires for info...
173K€
Cerrado
MAT2008-02770
ESTUDIO DE LA TRANSFERENCIA DE ESPIN EN PAREDES Y NANOSISTEM...
133K€
Cerrado
Información proyecto FEMTOSPIN
Líder del proyecto
UNIVERSITY OF YORK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
5M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Information storage technology is essentially based on nanostructured magnetic materials. Considerable research effort is aimed at increasing the density of stored information and this generally requires increasingly sophisticated media design to engineer the desired combination of low write field and thermal stability of recording information. An alternative approach is Heat Assisted Magnetic Recording in which a laser is used to heat the medium to a sufficiently high temperature to assure writability using currently available write head fields. Also a new, highly promising, development is that of spin electronics in which the spin of the electron rather than merely the charge forms the basis of the device operation. This holds the prospect of allowing technology to develop beyond the limits of miniaturisation of standard electronics and may yield the solution of the increasing power requirements for conventional electronic devices. However, the switching speeds are limited by precessional motion of the magnetic spins to hundreds of picoseconds. However, magnetic spins can be manipulated on the femtosecond timescale. However, the physics of the processes occurring on this timescale is poorly understood. The proposal aims to develop a multiscale approach to the theoretical understanding of femtosecond magnetisation processes and to make a critical comparison with experimental data. The overall goal of the project is to use this understanding to optimise materials for ultrafast (femtosecond) reversal and to develop computational tools for future materials and device design.