Multiscale Modeling of Glassy Electrolytes for Solid-State Batteries
New energy storage solutions are required for enabling a sustainable society. Solid-state batteries (SSBs) are promising candidates due to their safety and higher energy density compared to conventional batteries. Particularly, th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MultiBat
Duración del proyecto: 33 meses
Fecha Inicio: 2024-04-22
Fecha Fin: 2027-01-31
Líder del proyecto
AALBORG UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
231K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
New energy storage solutions are required for enabling a sustainable society. Solid-state batteries (SSBs) are promising candidates due to their safety and higher energy density compared to conventional batteries. Particularly, the adoption of solid-state electrolytes with a disordered structure, i.e., glassy electrolytes, has garnered attention due to their superior ionic conductivity, interfacial stability, and reduced dendrite formation compared to crystal electrolytes. However, challenges related to brittle fracture, scalable production, and multiscale modeling impede large-scale commercialization of SSBs.
This project aims to establish a multiscale, multiphysics model for glassy electrolytes in SSBs across varying length and time scales. Initially, deep learning force fields for two glassy electrolyte families, namely lithium-aluminum-titanium-phosphate and lithium thiosilicate, will be developed based on training data generated using ab initio molecular dynamics (Work Package 1). Based on this, large-scale molecular dynamics simulations will be used to clarify the lithium diffusion and fracture mechanisms within the glassy electrolytes at the atomic scale (Work Package 2). Lastly, a multiscale, multiphysics model will be constructed by integrating finite element methods with macro atomistic ab initio dynamics simulations to simultaneously account for electrochemical reactions, heat transfer, and mechanical deformation (Work Package 3).
Aalborg University's excellent research environment and the expertise of the fellow applicant (multiphysics modeling) and supervisor (molecular dynamics, glasses) will ensure the achievement of the project’s objectives and the broad dissemination of the findings. By advancing theoretical insights into the behavior of glassy electrolytes, the study will contribute to safer and more efficient batteries. The fellow applicant will also emerge from the project with new skills and the ability to lead an independent research group.