Multiscale Inversion of Porous Rock Physics using High Performance Simulators B...
Multiscale Inversion of Porous Rock Physics using High Performance Simulators Bridging the Gap between Mathematics and Geophysics
We will develop and exchange knowledge on applied mathematics, high-performance computing (HPC), and geophysics to better characterize the Earth´s subsurface. We aim to better understand porous rocks physics in the context of ela...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HPC-GA
High Performance Computing for Geophysics Applications
244K€
Cerrado
PCI2022-134989-2
CENTER OF EXCELLENCE FOR EXASCALE IN SOLID EARTH - SECOND PH...
188K€
Cerrado
PCI2022-134973-2
CENTER OF EXCELLENCE FOR EXASCALE IN SOLID EARTH - SECOND PH...
454K€
Cerrado
ChEESE
Centre of Excellence for Exascale in Solid Earth
8M€
Cerrado
GEAGAM
Geophysical Exploration using Advanced GAlerkin Methods
581K€
Cerrado
ChEESE-2P
Center of Excellence for Exascale in Solid Earth Second Ph...
8M€
Cerrado
Información proyecto MATHROCKS
Duración del proyecto: 66 meses
Fecha Inicio: 2017-09-25
Fecha Fin: 2023-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We will develop and exchange knowledge on applied mathematics, high-performance computing (HPC), and geophysics to better characterize the Earth´s subsurface. We aim to better understand porous rocks physics in the context of elasto-acoustic wave propagation phenomena. We will develop parallel high-continuity isogeometric analysis (IGA) simulators for geophysics. We will design and implement fast and robust parallel solvers for linear equations to model multi-physics electromagnetic and elasto-acoustic phenomena. We seek to develop a parallel joint inversion workflow for electromagnetic and seismic geophysical measurements. To verify and validate these tools and methods, we will apply the results to: characterise hydrocarbon reservoirs, determine optimal locations for geothermal energy production, analyze earthquake propagation, and jointly invert deep-azimuthal resistivity and elasto-acoustic borehole measurements.
Our target computer architectures for the simulation and inversion software infrastructure consists of distributed-memory parallel machines that incorporate the latest Intel Xeon Phi processors. Thus, we will build a hybrid OpenMP and MPI software framework.
We will widely disseminate our collaborative research results through publications, workshops, postgraduate courses to train new researchers, a dedicated webpage with regular updates, and visits to companies working in the area. Therefore, we will perform a significant role in technology transfer between the most advanced numerical methods and mathematics, the latest super-computer architectures, and the area of applied geophysics.