MULTISCALE ANALYSIS OF PRECIPITATE IN Al Cu ALLOYS
Al-Cu alloys have a wide range of engineering applications due to their low density and high strength provide by a fine dispersion of nm-sized precipitates. The optimization of the mechanical properties of these alloys has been tr...
ver más
20/06/2022
IMDEA MATERIALES
173K€
Presupuesto del proyecto: 173K€
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo H2020 notifico la concesión del proyecto
el día 2022-06-20
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MAPAA
Duración del proyecto: 28 meses
Fecha Inicio: 2020-02-19
Fecha Fin: 2022-06-20
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Presupuesto del proyecto
173K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Al-Cu alloys have a wide range of engineering applications due to their low density and high strength provide by a fine dispersion of nm-sized precipitates. The optimization of the mechanical properties of these alloys has been traditionally carried out through costly experimental trial-and-error approaches. In this project, a novel methodology is presented to determine the precipitate structure resulting from high temperature ageing and the resulting strength of the alloys from first principles calculations. The strategy is based in two main pillars. The first one is the determination of the Al-rich part of the Al-Cu phase diagram by means the construction of effective cluster expansion Hamiltonians that can extrapolate first-principles calculations in combination with statistical mechanics approaches based on Monte Carlo simulations to include the entropic contributions, enabling parameter-free predictions of the phase diagram. The second one is the combination of this information with phase field modeling to predict the homogeneous and heterogeneous nucleation and growth of precipitates during high temperature ageing and with molecular dynamics and dislocation dynamics simulations to predict the strengthening provided by the precipitates. The approach developed in this proposal will improve the predictive power of Integrated Computational Materials Engineering in Al-Cu alloys. The applicant will transfer her expertise and international connection in the field of multiscale modelling to the host institute. She will work with researchers of the host institution to prompt new areas of research that can attract new funding and receive regular training on transferable skills. All these activities will enlarge her portfolio of skills and will ensure further development of her career.