Multi-omics characterization of descending motor circuits in the brainstem
The execution of coordinated and adaptive movements is the final manifestation of virtually all brain processes. Altered motor function is hence an associate feature of almost all conditions that affect the nervous system and is h...
The execution of coordinated and adaptive movements is the final manifestation of virtually all brain processes. Altered motor function is hence an associate feature of almost all conditions that affect the nervous system and is highly debilitating. This program will shed new light on the neuronal basis of movements with a focus on the cooperative roles of the brain and the spinal cord for composing and orchestrating multifaceted and adaptive motor behaviors.
Reticulospinal (RS) neurons of the brainstem reticular formation (RF) are pivotal for controlling the most vital movements. They have long been seen as a unified relay of command signals from various integrative centers upstream, to most, if not all, executory motor circuits downstream. Yet, based on recent findings and our ongoing work, we posit that RS neurons rather exhibit a substantial diversity and specialization by inputs and outputs that may support a form of selection and mixing of unitary components of composite motor behaviors.
Imprinting from the advent of multi-omics strategies in the mouse model, we will intersect functional connectomics and single-cell gene expression (the transcriptome) to achieve a most comprehensive characterization of RS neurons’ diversity, specialization, and interactions with their upstream and downstream brain areas. We will first investigate the anatomo-functional organization of an already circumscribed subset of RS neurons for orchestrating orienting motor actions. We will in parallel investigate the role and connectivity of other RS neurons, and provide genetic hallmarks of new functionally-relevant subsets. Our results will propel forward our understanding of the complex organization of the RF, its role in orchestrating composite movements, and its links with the rest of the brain. They will also provide new genetic hallmarks of RS neurons’ diversity which will be precious handles to ultimately examine and act on specific cell types in post-traumatic contexts.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.