Multi-level approach for the up-scaling of ultra high temperature energy storage...
Multi-level approach for the up-scaling of ultra high temperature energy storage and conversion
The growing interest for the integration of renewable energy sources, as solar energy, in the global energy mix, increases the need of developing of new methods that will assist on the up-scaling and demonstration of efficient ene...
ver más
Descripción del proyecto
The growing interest for the integration of renewable energy sources, as solar energy, in the global energy mix, increases the need of developing of new methods that will assist on the up-scaling and demonstration of efficient energy storage and conversion technologies. In this regard, advanced modelling methods can be an indispensable tool towards this effort. SHINE aims at developing a holistic numerical methodology – by using in-house codes coupled with commercial software– that will boost the cost-efficient and sustainable electricity production and storage at unprecedented ultra-high temperatures (> 1000 oC). The stepping stone for the modelling activities will be a compact latent heat thermophotovoltaic device recently patented in UPM targeted for energy storage and production at ultra-high temperatures. The core components in such a device are the latent heat thermal energy storage system and the thermophotovoltaic device. The modelling methodology will integrate rigorous multi-physics models (fluid dynamics, heat transfer and optoelectronics) targeted at a component level into a reduced order model (ROM) by using multi-variable polynomial functions. Key in the proposed methodology is the validation of the rigorous models through in-house measurements at ultra-high temperatures that will be undertaken at the host organisation. Key as well is the production of the multi-variable polynomials through artificial neural networks that will be undetaken during the Secondment phase. The whole project is highly interdisciplinary because it integrates highly interrelated diverse disciplines (physics, engineering, optoelectronics, thermo- and fluid-dynamics, photovoltaics and thermal storage, and artificial intelligence-AI) as well as know-how from experiments is a single holistic approach. Once developed the ROM will be used to predict the whole system's performance as being part of a solar-to-heat-to-power and a power-to-heat-to-power concepts.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.