Innovating Works

MULTIMOLD

Financiado
Multi-functional In-Mold Electronics
Film insert molding and in-mold decoration are standard processes in injection molding allowing to generate 3D shaped objects with seamlessly integrated graphics and high freedom in design. With the emerging functional printing of... Film insert molding and in-mold decoration are standard processes in injection molding allowing to generate 3D shaped objects with seamlessly integrated graphics and high freedom in design. With the emerging functional printing of circuits and sensors, the field of in-mold electronics has extremely expanded covering several applications (i.e., Human Machine Interface in automotive and industries, condition monitoring and sensors in energy generation field, healthcare, etc.).The entire manufacturing process for in-mold electronics includes several sub-processes, most of which have a high yield of ~ 99%. However, the yield for overmolding, which is crucial for the production of complex products, is 85% at best, resulting in an overall yield that is far too low and requires high tooling and process optimization costs. Since nowadays in-mold electronic products are multi-material compounds that are difficult to recycle they do not meet the requirements of European society and policy on sustainability and circularity. The currently used capacitive sensors are not usable with cold fingers or gloves and do not provide haptic feedback, thus leading to an unsatisfactory user experience. Moreover, the direct lightning by LEDs placed in the vicinity of capacitive sensors generates a substantial heat inside the injection-molded part, leading to low durability and bad user experience in the Human Machine Interface.To overcome these limitations the objective of the MULTIMOLD project is to develop the next generation manufacturing process for products with complex geometries based on in-mold electronics with a robust, weather-resistant material concept that provides inherent recyclability by design. The MULTIMOLD complex products will combine advanced electronic functionality, multimodal sensors, haptic feedback, and power supply with micro- and nanostructured functional surfaces that may be light guiding, anti-bacterial, anti-icing, easy-to-clean and have appealing textures. ver más
31/12/2027
Presupuesto desconocido
Duración del proyecto: 47 meses Fecha Inicio: 2024-01-01
Fecha Fin: 2027-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-01-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Líder del proyecto
JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT MBH No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5