The subject of this proposal is the development of fibre-reinforced polymer (FRP) composites with mechanical properties in the high-performance range, electrical and thermal conductivities superior to those of carbon fibre composi...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
REAMOFUN
Reactive Molecular Modelling of Multi Functional Hybrid Grap...
255K€
Cerrado
MAT2010-18485
MATERIALES DE ELEVADA CONDUCTIVIDAD ELECTRICA Y PRESTACIONES...
70K€
Cerrado
BME CLEAN SKY 032
Resin Laminate and Industrial Nanoparticles Concept and App...
180K€
Cerrado
MAT2013-46695-C3-3-R
MATERIALES MULTIFUNCIONALES CON NANOESTRUCTURAS DE CARBONO (...
101K€
Cerrado
MAT2009-09335
DESARROLLO DE NUEVOS NANOCOMPUESTOS POLIMERICOS BASADOS EN G...
56K€
Cerrado
DPI2008-00918
DESARROLLO DE TECNICAS NUMERICAS PARA LA SIMULACION DE FENOM...
118K€
Cerrado
Información proyecto MUFIN
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The subject of this proposal is the development of fibre-reinforced polymer (FRP) composites with mechanical properties in the high-performance range, electrical and thermal conductivities superior to those of carbon fibre composites. The FRPs will be produced using a bottom-up process, based on macroscopic fibres made of carbon nanotubes (CNTs), a new form of high-performance fibre with mechanical properties in the high performance range (1-6 GPa strength, 50-250 GPa stiffness), high electrical (1x106 S/m) and thermal conductivity (150 W/mK), yarn-like structure, high surface area (200-400m2/g) and which can be produced from natural gas in a one-stage process. The CNT fibres will be used to make FRPs manufactured using established techniques such as resin transfer moulding (RTM) and pultrusion. The structure of the nanocomposites will be tailored at different scales, from the nano to the macro, to maximise multifunctionality. Tailoring will be achieved by controlling the following parameters: type of nanotubes synthesised (aspect ratio, number of layers), fibre architecture (porosity, surface area, CNT orientation), and fibre-matrix interaction (sizing, functionalisation).