Multidimensional generAtion of bulk Photovoltaic currents by vectorial Light Eng...
Replacement of fossil fuels with renewable energy sources is one of the main challenges of our time. Harvesting solar radiation is a possible solution, as the sunlight power reaching Earth is orders of magnitude larger than human...
Replacement of fossil fuels with renewable energy sources is one of the main challenges of our time. Harvesting solar radiation is a possible solution, as the sunlight power reaching Earth is orders of magnitude larger than human consumption. However, the efficiency of photovoltaic solar cells is limited by dissipation of all the photons energy exceeding the semiconductor bandgap according to the Shockley-Queisser (SQ) limit. The bulk photovoltaic (BPV) effect arising in non-centrosymmetric crystals has attracted considerable attention as above-bandgap electrons are predicted to contribute to the photocurrent, thus breaking the SQ limit. To enhance BPV-device efficiencies the underlying tensorial light-matter interaction needs further attention. Until now, the contribution from the three-dimensional shape of the electromagnetic field has been neglected, while a greater emphasis has been placed on the effect of the in-plane field gradient. A comprehensive theoretical and experimental understanding of the vectorial coupling between the conductivity tensor and the three-dimensional field structure is thus far lacking. The goal of this proposal is to identify the mechanism governing this coupling through carefully engineered light beams and by nanoscale mapping of the photocurrent with a novel scanning probe technique. This knowledge will be used to develop an optimization algorithm to improve BPV-devices efficiency: given a target material it will return the light structuring which maximizes the photocurrent generation. During the project I will complement my skills in scanning probe techniques, optics and solid-state physics with methods in structured light and materials science/engineering. This unique set of skills will enable the progress of my career in the emerging field of structured light-matter interactions. At the same time, I will acquire the necessary transferrable skills (leadership, communication and grant writing) to become an independent group leader.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.