"Amid global uncertainties and evolving geopolitical tensions, ensuring the secrecy of critical communications and safeguarding European technological sovereignty has become paramount. The vulnerabilities of traditional encryption...
"Amid global uncertainties and evolving geopolitical tensions, ensuring the secrecy of critical communications and safeguarding European technological sovereignty has become paramount. The vulnerabilities of traditional encryption methods have already been exposed and there are indications that certain countries are already employing the ""harvest now, decrypt later"" principle, emphasizing the urgency for enhanced digital security measures. Quantum Key Distribution (QKD) offers a revolutionary approach to secure key exchange, harnessing the principles of quantum mechanics to provide perfect secrecy. However, the widespread adoption of QKD still faces significant obstacles, including compatibility issues with existing telecom infrastructure and the current low secure key rates (SKR).
Recent manufacturing advancements in multicore fibers (MCF) place them as a compelling answer, as they offer a host of advantages. For instance, they provide support for spatial-division multiplexing, enabling to reach the SKR capacity demands; they facilitate the integration of quantum and classical networks within a single fiber with a smaller footprint compared to bundles of standard optical fibers; and they enable the distribution of entangled photons, opening the door for multiparty communication. With these capabilities, MCFs assume a pivotal role in constructing the foundation of the future quantum network.
This research explores the potential of MCF for next-generation quantum networks. It aims to introduce and implement a novel space- and wavelength-division multiplexing scheme for high-dimensional (HD) QKD, offering an increased channel capacity and enhanced security. Further, this project studies the distribution of entangled photons over a deployed MCF link and seeks to perform QKD between multiple users. Additionally, it aims to explore the coexistence of quantum information along with real-valued internet traffic."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.