With the progress of biological investigation, there comes a strong wish or need for imaging biological samples with multi-modality and on different scales. To meet this need, this project will develop a multi-modal 3D optical im...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CellStructure
Structural cell biology in situ using superresolution micros...
2M€
Cerrado
MUSICAL
Chip based MUSICAL nanoscopy for imaging endocytosis pathway...
208K€
Cerrado
FIS2009-09135
DESARROLLO DE NUEVOS DISPOSITIVOS DE REGISTRO Y VISUALIZACIO...
159K€
Cerrado
FWMIMAGING
Study of coherent non linear optical response of nanoparticl...
179K€
Cerrado
STORM
Development and Application of Super resolution Localization...
100K€
Cerrado
IntraMol
Intramolecular optical microscopy with sub-nm spatial resolu...
174K€
Cerrado
Información proyecto MOIPB
Duración del proyecto: 40 meses
Fecha Inicio: 2016-02-24
Fecha Fin: 2019-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With the progress of biological investigation, there comes a strong wish or need for imaging biological samples with multi-modality and on different scales. To meet this need, this project will develop a multi-modal 3D optical imaging platform that images on the multi-scale, from tissues to molecules, by integrating optical coherence tomography (OCT), stimulated emission depletion microscopy (STED), and fluorescence correlation spectroscopy (FCS). Incorporation of structured illumination, adaptive optics and focused engineering will improve spatial resolution, imaging depth, and molecular concentration sensitivity. The investigated technique will be tested and applied to biology investigation, including but not limited to, tissue and cell recovery in the Zebrafish (as a model organism) after laser damage. The multi-scale structural and functional image, as well as the dynamics on the protein level provided by this investigation, will potentially reveal tissue and cell recovery mechanisms, and in the long run contribute to the cure of disease along with understanding the mechanisms of tissue damage. This project will advance the state-of-the-art in optical imaging, and create new links between basic research and biological and clinical applications.