Mott Insulator Transition in a Quantum Fluid of Light
Photons are great carriers of information but they usually don’t interact with one another. Atoms interact but are hard to manipulate and do not benefit from the toolbox of quantum optics for detecting quantum fluctuations and ent...
Photons are great carriers of information but they usually don’t interact with one another. Atoms interact but are hard to manipulate and do not benefit from the toolbox of quantum optics for detecting quantum fluctuations and entanglement.
Many approaches have been proposed to marry these two systems for quantum simulation of condensed matter with strongly interacting photons, but to date, the realization of large-scale synthetic materials made of optical photons is still missing.
My project targets this exciting goal, namely the creation of synthetic photonic matter. It relies on the original approach of engineering a quantum phase transition in a fluid of light.
Specifically, I will investigate the superfluid to Mott insulator transition for light propagating in a dense cold atomic cloud. Photons will acquire an effective mass due to the paraxial approximation and I will generate and tune the strong photon-photon interactions via a giant Kerr non-linearity induced by manipulating atomic coherences. In this regime, photons will behave as a quantum fluid of light and follow an evolution similar to ultracold atomic quantum gases.
My original hypothesis is that a fluid of light should undergo the same phase transition, driven by quantum fluctuations, as quantum gases do, and that a many-body state of light will emerge from this transition.
At the fundamental level, a Mott insulator state of light allows for exploring truly quantum effects such as the emergence of analogue of phase transition in non-equilibrium systems, the presence of quantum depletion and pre-thermal states and the entanglement dynamics in many-body systems.
On the applied side, a photonic Mott insulator is a giant source of single photons (or any Fock state) with potentially several hundreds of lattice sites delivering tunable photon number-states in parallel. It will be a game changer for scalability issues in photonics quantum technologies.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.