"The purpose of the proposed research is to forward the understanding of the umbral moonshine discovered recently by myself. I plan to study it in the context of string theory. Moreover, I aim to use this new discovery to gain a d...
"The purpose of the proposed research is to forward the understanding of the umbral moonshine discovered recently by myself. I plan to study it in the context of string theory. Moreover, I aim to use this new discovery to gain a deeper understanding of certain fundamental aspects of the theory.
The term moonshine refers to the astonishing and puzzling relation between functions with special symmetries (modular properties) and finite groups. The novel type of moonshine involves the so-called mock modular forms, and was first noticed in the study of K3 surfaces. In a recent paper I constructed 23 instances of such a new ""umbral moonshine"" phenomenon in a completely uniform way using the 23 special lattices classified by Niemeier as the starting point, and thereby provided the general framework in which this paradigm should be studied.
From a physical point of view, it is well-known that K3 surfaces play a crucial role in not only the specific constructions of compactifications but also the fundamental dualities in string theory. Hence, the new quantum symmetries of K3 surfaces, as suggested by umbral moonshine, will have a wide range of important implications for string theory. Moreover, I believe the solution of the moonshine puzzle will lead to a new understanding of the long sought-after algebraic structure of the supersymmetric (or BPS) spectrum of supersymmetric quantum theories. More ambitiously, I aim to draw lessons from these special theories with large symmetries to shed light on the structure of the ""landscape"" of string theory vacua.
From a mathematical point of view, to understand and to prove such a mysterious and beautiful relation would be a triumph in its own right. Moreover, the development of umbral moonshine will undoubtedly lead to new important results in the study automorphic forms, K3 geometry, and extended algebras."ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.