MOnitoring VEgetation status and functioning at high spatio temporal resolution...
MOnitoring VEgetation status and functioning at high spatio temporal resolution from Sentinel 2
Leaf Area Index (LAI), Fraction of green Vegetation Cover (FCOVER) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are key biophysical variables representing the status and functioning of vegetation. High spat...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2015-69095-R
LANDSAT-8+SENTINEL-2: EXPLORANDO SINERGIAS PARA EL SEGUIMIEN...
214K€
Cerrado
SENSORVEG
Staff Exchanges to estimate vegetation structure and biochem...
363K€
Cerrado
PID2020-117303GB-C21
TECNICAS RADAR PARA LA OBSERVACION CONTINUA DE LA TIERRA: SI...
93K€
Cerrado
TRANSFORM-EO
Towards the opeRAtioNal Surface Fluxes and sOil Moisture Re...
100K€
Cerrado
ReSPEc
Towards a Remotely sensed estimation of the Photosynthetic E...
161K€
Cerrado
VEGHEALTH
Remote Estimating Vegetation Health
256K€
Cerrado
Información proyecto MOVES
Duración del proyecto: 31 meses
Fecha Inicio: 2019-03-18
Fecha Fin: 2021-10-20
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Leaf Area Index (LAI), Fraction of green Vegetation Cover (FCOVER) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are key biophysical variables representing the status and functioning of vegetation. High spatiotemporal resolution LAI/FAPAR/FCOVER products are urgently needed in many terrestrial applications including crop and forest management. However, the trade-off in traditional remote sensing sensors between temporal and spatial resolutions hinders the generation of such products. The launch of Sentinel-2 satellites, with spatial resolution of 10-20 m and 5-day temporal sampling (in tandem), opens a new paradigm in satellite vegetation monitoring. The proposed project MOVES will develop an operational algorithm for retrieving LAI/FAPAR/FCOVER from Sentinel-2 data. An easily-invertible radiative transfer model (RTM) will be firstly developed, which will apply a universal model framework for all vegetation types (continuous vs discrete) and terrains (horizontal vs sloping). In this project, the hybrid training and domain adaption paradigms will be introduced into the retrieval of LAI/FAPAR/FCOVER, to enhance the transferability of the retrieval algorithm and achieve spatiotemporally consistent retrieval. The Copernicus ground-based observations (GBOC) and FLUXNET sites will be used to validate the proposed algorithm and assess its potential in the monitoring of vegetation status and functioning. The project is conceived to combine the prominent expertise of the hosting institute in biophysical variable retrieval and remote sensing ecological application, with my well-demonstrated RTM development skills. Overall, MOVES will facilitate the delivery of Sentinel-2 LAI/FAPAR/FCOVER products of physical consistence and high accuracy, and underpin new avenues for the development of high spatiotemporal frequency vegetation monitoring systems.