One over three women with breast cancer will develop mental health issues, adding the burden of a deterioration of their quality of life to the management of cancer itself.
The objective of the MATER project is to improve the det...
One over three women with breast cancer will develop mental health issues, adding the burden of a deterioration of their quality of life to the management of cancer itself.
The objective of the MATER project is to improve the detection and monitoring of mental health in women with breast cancer by leveraging symptom networks and vocal biomarkers. The project addresses three research questions. We first hypothesize that the use of symptom networks will allow a better understanding of the links between depressive symptoms, fatigue and a decreased quality of life, and identify the most important symptoms in the deterioration of the mental health of these women.
We also assume that automatically estimating these symptoms using voice descriptors extracted from real-life recordings and machine learning pipelines will make it easier to monitor them in the patients' homes. Finally, we hypothesize that the use of a Bayesian network algorithm combining the symptom network and the voice-based symptom estimations will allow a more accurate joint estimation of these symptoms - and thus improve the identification and monitoring of mental health-related symptoms in women with breast cancer.
The interdisciplinary MATER project is based on Colive Voice, a unique dataset of clinical and voice data and leverages both the complementary host's and supervisor's extensive experience in digital and personalized health and the applicant's knowledge of vocal biomarker design and machine learning, mental disorder semiology, and Bayesian networks. This project will allow the applicant to improve his skills in voice signal processing, precision health (in particular in oncology), but also in scientific project management and in research valorization, creating an international network and elevating his profile to such levels as to accelerate his access to high-level academic positions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.