Molecular Spin Interactions in Magnetic Fields of Superconducting Vortices
Successful implementation of modern quantum technologies is strongly tied to the efficient realization of quantum bits - qubits that promise to revolutionize our current computational and information processing schemes. However, a...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAT2015-68204-R
MOLECULAS PARA TECNOLOGIAS DE REFRIGERACION E INFORMACION
121K€
Cerrado
BES-2012-052143
OBSERVACION DIRECTA DE LAS PROPIEDADES INDIVIDUALES Y COLECT...
43K€
Cerrado
VectorFieldImaging
Scanning probe microscopy in high vectorial magnetic fields:...
150K€
Cerrado
QMatCh
Towards Quantum States of Matter via Chemistry under Extreme...
162K€
Cerrado
TROPIC
Gaining leverage with spin liquids and superconductors
2M€
Cerrado
BES-2015-074520
MOLECULAS MAGNETICAS DE INTERES EN COMPUTACION Y ESPINTRONIC...
93K€
Cerrado
Información proyecto OPTIMISTIC
Duración del proyecto: 34 meses
Fecha Inicio: 2023-03-30
Fecha Fin: 2026-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Successful implementation of modern quantum technologies is strongly tied to the efficient realization of quantum bits - qubits that promise to revolutionize our current computational and information processing schemes. However, an outstanding challanges concerns the scalability with an expanding number of qubits, making the execution of complex algorithms problematic. In this respect, molecular spin systems are attractive candidates for a scalable qubit platform. The principal idea of the project is to study the behavior and quantum interactions of molecular spin systems exposed to the magnetic fields at the center of Abrikosov vortices in type-II superconductors (BSCCO, YBCO, NbSe2) using state-of-the-art scanning probe microscopy (SPM). This concept promises access to strongly localized magnetic fields of exceptional strength, offering novel perspectives for molecular qubit research, surface science, and material science. The findings will be further utilized to study magnetic ordering in exotic 2D materials (CrBr3, NiI2) exhibiting noncollinear magnetic ordering. The project's novelty lies both in the methodology and research objectives, which will be achieved via a unique synergy of host group expertise in superconducting substrates and preparation of exotic 2D material systems and researcher's know-how in molecular spin systems and magnetic sensing with functionalized SPM tips (metallocene molecules).