Molecular physiology of nerve terminal bioenergetics
Synaptic transmission is an extremely energetically-demanding process that consumes 75% of the energy required for brain function. However, it remains poorly understood how synapses guarantee the necessary ATP levels required for...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SAF2013-41177-R
ADAPTACIONES METABOLICAS DE LAS NEURONAS Y LA GLIA A LOS ROS...
387K€
Cerrado
PID2019-105699RB-I00
IMPACTO DE LA REPROGRAMACION METABOLICA DE LOS ASTROCITOS SO...
411K€
Cerrado
SAF2011-30283
REGULACION DEL METABOLISMO DE LA GLUCOSA POR LA ACTIVIDAD SI...
133K€
Cerrado
PID2020-117651RB-I00
INTERACCION ENTRE PLASTICIDAD SINAPTICA Y METABOLICA. RELEVA...
363K€
Cerrado
PID2019-108674RB-I00
LA MITOCONDRIA Y SU DISFUNCION EN PATOLOGIA: PAPEL DE IF1
375K€
Cerrado
EnergizeTau
Tau, a molecular modulator of neuronal energy managment
2M€
Cerrado
Información proyecto SynaptoEnergy
Duración del proyecto: 67 meses
Fecha Inicio: 2019-11-05
Fecha Fin: 2025-06-30
Descripción del proyecto
Synaptic transmission is an extremely energetically-demanding process that consumes 75% of the energy required for brain function. However, it remains poorly understood how synapses guarantee the necessary ATP levels required for neurotransmission. While our understanding of the metabolic pathways for ATP production is vastly detailed, very little is known about the actual molecular implementation of these pathways in neurons for sustaining synaptic bioenergetics. I hypothesize that tightly-regulated control mechanisms exist presynaptically to ensure the molecular activation of glycolysis and oxidative phosphorylation (OxPhos) on demand, optimally coupling local ATP synthesis to consumption thereby maintaining synaptic metabolic integrity and safeguarding presynaptic function. Here I propose to develop a comprehensive molecular understanding of the mechanisms controlling these pathways in firing synapses. I will use cutting-edge optophysiology tools that I and others have developed to study neuronal bioenergetics together with novel proteomic approaches to identify key molecules involved in controlling presynaptic OxPhos and glycolysis. First, I will dissect the fundamental mechanisms controlling Ca2+-mediated activation of OxPhos in presynaptic mitochondria during synaptic activity. To further elucidate the presynaptic choreography of molecular mechanisms enhancing glycolysis rates on demand, I will dissect the mechanistic control of the presynaptic glucose carrier GLUT4 and establish the role of glycolytic metabolons in accelerating glycolysis during synaptic activity. By generating for the first time a comprehensive picture of the molecular mechanisms actively maintaining presynaptic metabolic integrity, this study will provide a framework for future studies into the molecular basis of brain disease states associated with dysfunctional metabolism, such as mitochondriopathies, vascular dementias or glucose metabolism diseases.