Molecular materials for a new generation of artificial muscles
Actuator devices converting energy into motion are a fundamental part of everyday life. However, there is currently an unmet need in actuation technologies to provide soft, smooth, noiseless movement that can mimic human motion an...
Actuator devices converting energy into motion are a fundamental part of everyday life. However, there is currently an unmet need in actuation technologies to provide soft, smooth, noiseless movement that can mimic human motion and dexterity. The development of such artificial muscles is burgeoning in both interest and importance as it would enable significant advances in areas as important as robotics, medicine and aeronautics. To enable a step-change in this field, E·MOTION proposes to develop unprecedented macroscopic-scale soft materials based on switchable spin crossover molecules with remarkable actuating performances. Using an innovative combination of material engineering methods these materials will be endowed with electrical actuation, self-sensing and energy harvesting properties, which will be a major breakthrough. More fundamentally, E·MOTION aims at understanding in-depth structure vs. mechanical property relationships in these switchable materials, which is essential for processing and optimizing their function. A multiscale experimental and theoretical approach will be used to assess how the molecular deformation and change in molecular connectivity under external stimuli affect macroscopic mechanical properties as well as the cycle life. Finally, E·MOTION will take a major shift on the side of actuator design by the development of original fibre-braided actuators as well as 3D-printed, microfluidic actuator devices made of these materials. These advanced actuator designs will then be thoroughly analysed for their ability to mimic complex muscular schemes. This ambitious, multidisciplinary project that brings together various aspects of molecular and polymer chemistry, condensed matter physics, mechanical engineering and advanced manufacturing, will enable a new departure in my career and a significant leap forward in the state-of-the-art that shall expedite the societal exploitation of these novel, molecule-based actuator technologies.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.