Molecular exchange at the plant-fungal interface in arbuscular mycorrhiza symbio...
Molecular exchange at the plant-fungal interface in arbuscular mycorrhiza symbiosis
Nutrient acquisition is the basis of life. Arbuscular mycorrhiza (AM) symbiosis of plants with nutrient-delivering fungi is detected in the oldest land plant fossils and considered a prerequisite for plant life on land. It is wide...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-115336GB-I00
RED DE FACTORES DE TRANSCRIPCION GRAS ESENCIALES PARA LA REG...
174K€
Cerrado
AGL2008-00742
ESTUDIO DE LA IMPLICACION DEL ACIDO ABSCISICO (ABA) EN LA FO...
121K€
Cerrado
AGL2009-07691
MECANISMOS REGULADORES DEL PRIMING ASOCIADO A LA RESISTENCIA...
133K€
Cerrado
AGL2017-83871-P
CARACTERIZACION FUNCIONAL DE ELEMENTOS REGULADORES EN LA SIM...
182K€
Cerrado
PDC2022-133600-C22
IDENTIFICACION DE METABOLITOS MARCADORES EN MUESTRAS VEGETAL...
58K€
Cerrado
AGL2008-00742
ESTUDIO DE LA IMPLICACION DEL ACIDO ABSCISICO (ABA) EN LA FO...
121K€
Cerrado
Información proyecto SymbioticExchange
Duración del proyecto: 67 meses
Fecha Inicio: 2023-12-08
Fecha Fin: 2029-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Nutrient acquisition is the basis of life. Arbuscular mycorrhiza (AM) symbiosis of plants with nutrient-delivering fungi is detected in the oldest land plant fossils and considered a prerequisite for plant life on land. It is wide-spread in the plant kingdom and its secondary loss is the exception. AM improves plant nutrition, stress resistance and general plant performance. Breeding AM-optimized crops has significant potential for improving food security and sustainable agriculture. Understanding the molecular underpinnings of AM function is thus imperative. The hallmark of the symbiosis are the arbuscules, highly branched hyphal structures, which develop in root cortex cells. They build a large membrane interface with the plant derived peri-arbuscular membrane (PAM) that surrounds them. Most mineral nutrients are delivered from the arbuscules and taken up via the PAM into plant cells through transporter proteins. In return, the fungi receive up to 20% of the photosynthetically-fixed carbon. The balance in mineral-nutrient-gain-for-carbon-loss influences the effect of the symbiosis in plant growth and yield. However, the full range of transported nutrients, any mechanisms regulating transport and the balance in molecular exchange are unknown. ‘SymbioticExchange’ strategically integrates transcriptomics, phosphoproteomics, metabolomics and protein-protein interaction analysis, with reverse genetics, cell biology and transport physiology to identify novel plant and fungal transporters involved in symbiotic nutrient and metabolite exchange, and to understand the molecular mechanisms of their regulation. ‘SymbioticExchange’ will thus deliver major advances on the range of transporters at the plant-fungal interface, the exchanged goods and the regulation of exchange. This important knowledge-base will provide crucial clues on how nutrient exchange can be tuned for profitable agricultural application of one of the most important symbioses on earth.