Innovating Works

MEDEA

Financiado
Molecular Electron Dynamics investigated by IntensE Fields and Attosecond Pulses
The interaction of matter with light is one of the most fundamental processes occurring in nature with countless scientific and technological applications. In recent years, the continuing development of intense, ultrashort, cohere... The interaction of matter with light is one of the most fundamental processes occurring in nature with countless scientific and technological applications. In recent years, the continuing development of intense, ultrashort, coherent light sources from the mid-infrared (mid-IR) to the extreme ultraviolet (XUV) spectral range has opened new possibilities for the investigation of this interaction in new and complementary domains. In both the IR and XUV regimes, molecules and clusters of atoms interacting with light exhibit (correlated) multi-electron dynamics evolving on the few femtosecond (1 fs=10-15 s) to attosecond (1 as=10-18 s) timescale. Several experimental and theoretical investigations suggest that ultrafast multielectronic processes might be fundamental in determining the behaviour of molecules and clusters, and that understanding these phenomena might offer new perspectives on processes occurring on slower timescales, such as bond-breaking in complex molecules and Coulomb explosion in charged clusters. In this context, the main objectives of the MEDEA network are: 1) to advance attosecond and femtosecond XUV spectroscopy in molecules and clusters 2) to demonstrate the feasibility of nonlinear attosecond XUV spectroscopy, 3) to obtain benchmarks for the validation of attosecond tools and femtosecond XUV pulses for the time-resolved imaging of electron and nuclear dynamics in molecules, 4) to contribute to the development of new technological solutions that will increase the competiveness of the industrial partners 5) to train a group of early stage researchers (ESRs) and contribute to their career prospects, and 6) to increase the interest of young students in the network’s core research field (Photonics) by introducing a dedicated experimental kit in several European secondary schools. ver más
31/12/2018
4M€
Duración del proyecto: 48 meses Fecha Inicio: 2014-12-05
Fecha Fin: 2018-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2018-12-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
POLITECNICO DI MILANO No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5