Molecular Basis of Tubulin Transport During Cilium Formation
Cilia are essential hair-like structures presented at the surface of eukaryotic cells that allow motility, fluid flow and complex inter- and intracellular signalling events. Nine pairs of microtubules organized in a cylindrical sh...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HITSCIL
How intraflagellar transport shapes the cilium a single mol...
2M€
Cerrado
TubulinCode
Uncovering the molecular effects of the tubulin code and the...
11M€
Cerrado
ActinID
A molecular atlas of Actin filament IDentities in the cell m...
1M€
Cerrado
TuningTracks
Tuning the Tracks: Resolving the interplay between microtubu...
188K€
Cerrado
PGC2018-096976-B-I00
ORGANIZACION AND FUNCION DE LOS MICROTUBULOS RANGTP DEPENDIE...
212K€
Cerrado
FIS2012-37753
MICROSCOPIA DE FLUORESCENCIA DE ALTA RESOLUCION, STORM, BIOF...
183K€
Cerrado
Información proyecto ciTTub
Duración del proyecto: 29 meses
Fecha Inicio: 2020-03-05
Fecha Fin: 2022-08-07
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
219K€
Descripción del proyecto
Cilia are essential hair-like structures presented at the surface of eukaryotic cells that allow motility, fluid flow and complex inter- and intracellular signalling events. Nine pairs of microtubules organized in a cylindrical shape called axoneme form the backbone of cilia. The formation and maintenance of cilia is dependent on a multi-subunit protein complex termed the intraflagellar transport (IFT) complex that actively delivers axonemal building blocks such as tubulin from the base to the tip of growing cilia. Lack of cilia or its miss-construction leads to severe developmental diseases called ciliopathies. Despite its fundamental role in cilium biogenesis, the process of tubulin recruitment, loading and unloading by the IFT machinery remains poorly understood. In this proposal, I aim to elucidate the mechanism of tubulin loading onto IFT complexes by determining high-resolution structures of intraflagellar transport (IFT) complexes bound to tubulin. Details about the IFT-tubulin interaction interface will be obtained by a combination of biochemical techniques like site directed photo- and chemical crosslinking followed by mass-spectrometry analysis and the structural biology techniques X-ray crystallography and single particle cryo-electron microscopy (cryo-EM). Ultimately, this study will enrich our understanding of cilium biogenesis and homeostasis by providing the first insight at atomic resolution into cargo selection and loading onto IFT machinery.