Molecular basis for securin and cyclin ubiquitylation by the anaphase promoting...
Molecular basis for securin and cyclin ubiquitylation by the anaphase promoting complex APC C
This research proposal describes an ambitious effort to characterize structurally and biochemically ubiquitin chain initiation and elongation by the anaphase-promoting complex or cyclosome (APC/C) in complex with two well-characte...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto APCINTERACTIONS
Duración del proyecto: 35 meses
Fecha Inicio: 2015-03-24
Fecha Fin: 2018-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This research proposal describes an ambitious effort to characterize structurally and biochemically ubiquitin chain initiation and elongation by the anaphase-promoting complex or cyclosome (APC/C) in complex with two well-characterized substrates. The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that controls progression through the cell cycle by a temporal regulation of its activity and substrate specificity. Regulation and specificity of this E3 ligase is achieved through mutually exclusive binding of two structurally related co-activator subunits termed Cdc20 and Cdh1, as well as through APC/C inhibitors, varying substrate affinities and auto-ubiquitylation of its cognate E2s, namely UbcH10 and Ube2S. In order to understand ubiquitin chain initiation and elongation of the two well-known APC/C substrates cyclin B and securin, I am aiming to use a combined approach of cryo-electron microscopy, X-ray crystallography and a variety of biochemical methods. Within this project I will use cryo-electron microscopy studies to uncover the molecular mechanisms of substrate recognition and ubiquitin chain initiation and elongation by analyzing the APC/CCdh1 co-activator complex bound to its transiently associated E2 enzymes Ube2S or UbcH10 and one of the aforementioned high affinity substrates.
Crystallization of selected sub-complexes, namely the catalytic core of the APC/C (composed of Apc2 and Apc11) is intended. If obtained, this high-resolution information will then assist the interpretation of the resulting density maps derived from cryo-electron microscopy.