Innovating Works

ModSingLDT

Financiado
Moduli Spaces associated with Singularities
The aim of this project is to investigate enumerative invariants of the Hilbert schemes parametrizing zero-dimensional subschemes of some basic classes of surface singularities as well as of its higher rank analogues, and find con... The aim of this project is to investigate enumerative invariants of the Hilbert schemes parametrizing zero-dimensional subschemes of some basic classes of surface singularities as well as of its higher rank analogues, and find connections between these enumerative invariants and the Chern-Simons theories on the links of the singularities. This question will open brand new relations between algebraic and topological invariants of these singularities. The main tool to approach the problem will be to develop representations of vertex algebras on the cohomologies or derived categories of these moduli spaces conjecturally giving rise to analogues of the Nekrasov parition function on the singularities. Then we will use recent new developements about a specific motivic measure with values in the Grothendieck ring of geometric dg categories to prove some simplification of the aimed correspondence. In the end we will raise these simplified results to the general level. This project will allow the researcher to broaden his area of expertise as well as to develop new directions in his research lines. He will complement his knowledge in low-dimensional topology at one of the most prestigious research institutes and under the guidance of one of the worldwide leaders in this field. ver más
31/01/2023
152K€
Duración del proyecto: 34 meses Fecha Inicio: 2020-03-24
Fecha Fin: 2023-01-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2023-01-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
WF-02-2019: Widening Fellowships
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 152K€
Líder del proyecto
HUNREN RENYI ALFRED MATEMATIKAI KUTATOINTEZET No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5