This proposal concerns the application of homotopy theoretic methods to multiple questions of geometric nature, and in particular the study of moduli spaces. Firmly based in topology, the research proposed here is strongly motivat...
This proposal concerns the application of homotopy theoretic methods to multiple questions of geometric nature, and in particular the study of moduli spaces. Firmly based in topology, the research proposed here is strongly motivated by applications and potential applications to differential geometry, algebraic geometry and especially number theory.
Any moduli space parametrizes how certain objects may vary in families. The moduli spaces of manifolds parametrize how smooth manifolds may vary in families (smooth fiber bundles), and the representation varieties studied in the second major component parametrize how linear representations of a group may vary in algebraic families.
The homotopy theoretic study of moduli spaces of manifolds has seen spectacular successes in the last 15 years, kickstarted by a theorem of Madsen and Weiss concerning the topology of moduli spaces of 2-dimensional manifolds. Very recently, anongoing collaboration between O. Randal-Williams and myself promises to establish analoguous results for manifolds of higher dimension. If funded, the research proposed here will bring this research program to a point where all major results about surface moduli spaces have proven analogues for manifolds of higher dimension.
The second major component of this proposal has strong number-theoretic origins, but is essentially homotopy theoretic. It concerns the study of universal deformations of representations of (Galois) groups. If funded, the research in this component of the proposal, joint with Akshay Venkatesh, will develop derived (simplicial) deformation rings. Classical deformation rings have had spectacular applications in number theory (starting with Wiles’ work) and we also propose to begin the study of applications ofderived deformation rings.
Finally, the proposal contains smaller or more speculative projects, and points out many questions which might be suitable for the Ph.D.-students and postdocs also applied for in this proposal.ver más
14-11-2024:
Cataluña reutilizaci...
Se abre la línea de ayuda pública: Subvenciones para la ejecución de proyectos de prevención, preparación para la reutilización y reciclaje de residuos industriales para el organismo:
11-11-2024:
Asturias Hiperautoma...
Se ha cerrado la línea de ayuda pública: Proyectos de I+D+i que implementen soluciones en hiperautomatización en empresas para el organismo:
11-11-2024:
Cooperación I+D+i La...
Se ha cerrado la línea de ayuda pública: Proyectos colaborativos de desarrollo experimental e innovación que resuelvan retos en La Rioja para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.