Granular materials are omnipresent in our daily life. The same granular material can behave like solid and fluid, which poses a formidable challenge to the constitutive models and numerical methods. Traditionally, constitutive mod...
Granular materials are omnipresent in our daily life. The same granular material can behave like solid and fluid, which poses a formidable challenge to the constitutive models and numerical methods. Traditionally, constitutive models for the solid- and fluid-like behaviour have been developed for the respective flow regimes in different engineering/scientific disciplines with hardly any intersections. A single constitutive model capable of describing the transient behaviour during phase transitions in both solid-like and fluid-like regimes is a challenging task with enormous application potential. MOTRAN takes on this challenge with a simple yet efficient ansatz by decomposing the stress rate into a frictional and collisional part, which gives rise to an unconventional constitutive model with the 2nd order strain rate similar to the acceleration of motion. It serves as an excellent classifier for steady and transient motions. This constitutive model is then augmented to include a length scale in micropolar continuum for multiscale analysis. Based on the mixture theory, the field equations are established in rate form for the first time and discretised by a multi-layer SPH model. For polydisperse granular flow with individual large particles, the SPH model is coupled with own developed Surface Mesh Represented DEM to simulate particles of arbitrary shapes. Advanced solution techniques are developed based on multi-GPU acceleration for high fidelity simulation of large-scale problems. The constitutive model is calibrated by laboratory experiments on natural granular materials and their transparent surrogate. The numerical model is validated by scaled model tests under elevated acceleration in centrifuge as well as real-world cases of our database. MOTRAN is an exciting endeavour with the potential to create a new paradigm that will revolutionise the way how transient granular flow is to be modelled.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.