Innovating Works

MEDIA

Financiado
Modelling the Effect of DIspersion on convection in porous mediA
Global warming attracts great social, economic, political and scientific attention. A major proportion of the carbon dioxide (CO2) emitted in the atmosphere is due to anthropogenic activities and represents one of the main causes... Global warming attracts great social, economic, political and scientific attention. A major proportion of the carbon dioxide (CO2) emitted in the atmosphere is due to anthropogenic activities and represents one of the main causes of this global problem. A possible solution is represented by carbon sequestration: CO2 is captured from power plants and injected in underground geological formations, where it dissolves into the resident fluid (brine) and can be safely stored for hundreds of years. In this frame, the properties of the rocks play a key role: after injection, CO2 follows sinuous pathways among the rock grains and spreads in a complex manner, making predictions on the long-term dynamics hard to obtain. For this reason, the identification of suitable sequestration sites and the design of the injection process is still a challenging task. Moreover, injection of CO2 takes place at depths between 1 and 3 km beneath the earth surface, which makes in-situ measurements hard to obtain: simulations and lab-scale experiments are essential. To make practical and prudent decisions about the future energy production strategies, the European Union (EU) must be able to accurately identify its carbon storage capacity. The research proposed here, Modelling the Effect of Dispersion on convection In porous mediA (MEDIA), aims at improving our understanding and design capabilities of carbon storage processes in geological formations. This study will focus on the analysis and interpretation of experiments and simulations of convection in porous media. The results will be used to develop models that describe the rock properties, contributing also to improve commercial reservoir simulators. As part of MEDIA, the applicant will (1) examine the effect of dispersion via innovative experiments in bead packs, (2) quantify the effect of dispersion with state-of-art numerical pore-scale simulations, and (3) identify appropriate models of dispersion for large-scale simulations. ver más
31/08/2025
203K€
Perfil tecnológico estimado
Duración del proyecto: 35 meses Fecha Inicio: 2022-09-27
Fecha Fin: 2025-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-09-27
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 203K€
Líder del proyecto
UNIVERSITEIT TWENTE No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5