Innovating Works

SpinPhononHyb2D

Financiado
Modelling spin-phonon coupling in hybrid molecular/2D materials
Single Molecule Magnets (SMMs) that retain magnetisation in the absence of a magnetic field represent the smallest conceivable information storage devices. However, the interaction between spin and phonons, i.e. spin-phonon coupli... Single Molecule Magnets (SMMs) that retain magnetisation in the absence of a magnetic field represent the smallest conceivable information storage devices. However, the interaction between spin and phonons, i.e. spin-phonon coupling, strongly limits their working temperature, hindering the realization in fully-functioning devices. Recent studies have shown that spin-phonon coupling can be mitigated by employing high symmetry and strong exchange coupling, but a clear rationale of how spin relaxation is affected by this chemical strategy is not yet fully understod. In this project we will employ state-of-the-art computational methods to unravel the physics of spin-phonon relaxation of one mononuclear pseudo D4h and one exchange coupled mixed valence Dy(III) complexes and show the way forward towards a rational design of high-temperature SMMs. We will develop a fully ab initio strategy to predict the role of vibrational modes on magnetisation relaxation with the ultimate goal of providing new design principles for potential SMMs with quenched spin-phonon coupling interaction. However, for the potential application of SMMs in the nearest future one need to study surfaces and their interactions with SMMs. Indeed, the pathway of SMM-based devices is made of numerous steps among which the adsorption on the surface is the first and crucial one. Previous studies indicated that the several high performances SMMs lose their magnetic characterictics upon adsorbtion to the surface. In this project, we will deposit the SMMs on the surfaces on the 2D materials such as graphene, FePS3 and CrSBr and will analyze the structure, magnetic properties and spin-phonon coupling of the adsorbed complexes. The excellent deformation capacity of the 2D materials results in potential application in low cost electronics. Finally the interplay of spin-phonon coupling between molecule and 2D materials will be unveiled as this will offer as route to the 'heaven' of molecular spintronics. ver más
31/03/2025
UV
165K€
Duración del proyecto: 24 meses Fecha Inicio: 2023-03-08
Fecha Fin: 2025-03-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-03-08
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 165K€
Líder del proyecto
UNIVERSITAT DE VALÈNCIA (ESTUDI GENERAL) La universitat de valencia, como servicio publico que es, imparte las enseñanzas necesarias para la formacion de los estudiantes, la prepara...
Sin perfil tecnológico calculado