Modelling of MOF self assembly crystal growth and thin film formation
Metal-organic frameworks (MOFs) constitute one of the most exciting developments in recent nanoporous material science. Synthesised in a self-assembly process from metal corners and organic linkers, a near infinite number of mater...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAGNIFY
Decoding the Mechanisms Underlying Metal-Organic Frameworks...
1M€
Cerrado
MAT2015-65354-C2-1-R
COMPOSITES MULTIFUNCIONALES BASADOS EN REDES METALORGANICAS...
206K€
Cerrado
CTQ2017-90691-REDT
DEL DISEÑO A LAS APLICACIONES DE MATERIALES POROSOS AVANZADO...
17K€
Cerrado
PID2020-117177GB-I00
MOFS DE VALENCIA MIXTA CON COMPORTAMIENTO ELECTRONICO Y MAGN...
158K€
Cerrado
PID2020-118564GA-I00
USO DE REDES METAL-ORGANICAS COMO RECUBRIMIENTO FUNCIONALES...
92K€
Cerrado
BES-2015-072671
MATERIALES AUTOLIMPIABLES Y LIBERADORES DE MOLECULAS BIOACTI...
93K€
Cerrado
Información proyecto GROWMOF
Duración del proyecto: 64 meses
Fecha Inicio: 2015-03-11
Fecha Fin: 2020-07-31
Líder del proyecto
UNIVERSITY OF BATH
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Metal-organic frameworks (MOFs) constitute one of the most exciting developments in recent nanoporous material science. Synthesised in a self-assembly process from metal corners and organic linkers, a near infinite number of materials can be created by combining different building blocks allowing to fine tune host guest interactions. MOFs are therefore considered promising materials for many applications such as gas separation, drug delivery or sensors for which MOFs in form of nanoparticles, composite materials or thin films are required. For MOFs to realise their potential and to become more than just promising materials, a degree of predictability in the synthesis and the properties of the resulting material is paramount and the full multiscale pathway from molecular assembly to crystal growth and thin film formation needs to be better understood.
Molecular simulation has greatly contributed to developing adsorption applications of MOFs and now works hand-in-hand with experimental methods to characterise MOFs, predict their performance and study molecular level phenomena. In contrast, hardly any simulation studies exist about the formation of MOFs, their crystal growth or the formation of thin films. Yet such studies are essential for understanding the fundamentals which will ultimately lead to a better control of the material properties. Building on my expertise in molecular modelling including the development of methods to model the synthesis of porous solids, we will develop new methods to study:
1. the self-assembly process of MOFs under synthesis conditions
2. the formation of nanoparticles
3. the integration of MOF nanoparticles into composite materials and the self-assembly into extended structures
4. the layer-by-layer growth of thin films
At the end of the project we will have transformed our understanding of how MOFs form at a variety of length scales and opened up new research directions for the targeted synthesis of MOFs fit for applications.