Modeling the perturbational gradients of the human brain
Studying the brain mechanisms behind consciousness is a major challenge for neuroscience and medicine. Accumulating evidence shows that the structural, histological, functional, genetic, and neurochemical inhomogeneities of the ma...
Studying the brain mechanisms behind consciousness is a major challenge for neuroscience and medicine. Accumulating evidence shows that the structural, histological, functional, genetic, and neurochemical inhomogeneities of the mammalian cortex do not follow a modular distribution; instead, these properties change following gradients, understood as axes of variance along which cortical features are ordered continuously. The gradient describing the axis of largest variance (principal gradient) obtained for an ample range of cortical features follows a unimodal-transmodal organization, ranging from externally-oriented sensory and motor regions to multimodal association regions, culminating in regions linked with internally oriented higher-order cognitive functions. In this project we propose a novel approach, constructing, validating and exploring whole-brain computational models combining empirical information including anatomical connectivity, spatial maps of local neuroanatomical features, to reproduce the configuration of human functional gradients, as determined using manifold learning techniques applied to functional magnetic resonance imaging (fMRI) data. This will allow us to investigate the process by which functional gradients emerge from the spatial distribution of cortical anatomical inhomogeneities. The models will also provide the possibility to investigate how different global brain states behave under perturbations. In order to achieve our goals, we propose a highly interdisciplinary project that combines state-of-the-art principal gradient expertise with whole-brain computational modelling proposing a synergy between two groups with large expertise in each area to address a common question: do realistic functional gradients emerge from the dynamical equations when coupled by realistic long-range structural connections, and modulated locally by empirical maps encoding relevant neurochemical data?ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.