Model-aware learning for imaging inverse problems in fluorescence microscopy
This project will develop model-aware, i.e. physics-informed, learning methods for solving imaging inverse problems (IIPs) in fluorescence microscopy imaging (FMI). IIPs are frequently encountered in FMI whenever a visual represen...
This project will develop model-aware, i.e. physics-informed, learning methods for solving imaging inverse problems (IIPs) in fluorescence microscopy imaging (FMI). IIPs are frequently encountered in FMI whenever a visual representation of a biological sample needs to be reconstructed from incomplete and noisy input measurements. Such IIPs are typically ill-posed: their solution (if it exists) is unstable to perturbations. Classical model-based approaches reformulate the IIP at hand as an energy minimisation task. Such approaches rely both on the (approximate) knowledge of the complex physical processes involved and on the mathematical design of hand-crafted optimisation methods whose tuning is often very time-consuming. Concurrently, the impressive development of machine and deep learning methods has enabled the applied imaging community with new data-driven methodologies providing unprecedented results in tasks such as image classification. The performance of data-driven methods for solving IIPs in FMI, however, is halted by their intrinsic unstable behaviour. In MALIN, I propose an integrative paradigm where the stable performance of model-based approaches is combined with the effectiveness of data-driven techniques by means of shallow model-constrained learning and deep physics-informed generative approaches. The reliability of the model-aware methods proposed will be justified by theoretical results providing reconstruction and convergence guarantees. The study will further account for possible geometric invariances and imperfect physical modelling, showing robustness to modelling errors which are frequent when standard (low-cost) equipment is used. Algorithmic acceleration strategies and inexact/stochastic algorithms will be devised to guarantee efficient performance also under limited computational resources and training data. The methodologies will be deployed on several IIPs in FMI and democratised through the release of open software and plug-ins.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.