Model Completion through Nonlinear System Identification
Systems and control engineers aim to master increasingly complex dynamical systems while including stronger performance, operational and energy constraints. As model-based control design remains the dominant paradigm, this results...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
BES-2009-013882
IDENTIFICACION Y CONTROL DE SISTEMAS NO LINEALES Y LTV MEDIA...
43K€
Cerrado
MTM2011-27739-C04-04
METODOS NUMERICOS PARA ECUACIONES EN DERIVADAS PARCIALES: TE...
11K€
Cerrado
SCARCE
Scalable Control Approximations for Resource Constrained Env...
2M€
Cerrado
PID2020-116585GB-I00
APRENDIZAJE, CONTROL OPTIMO Y PLANIFICACION BAJO INCERTIDUMB...
63K€
Cerrado
PID2019-106212RB-C41
OPERACION SEGURA DE INFRAESTRUCTURAS ESTRATEGICAS BASADA EN...
206K€
Cerrado
PID2020-120087GB-C22
MODELIZACION DE PROCESOS INDUSTRIALES CON DINAMICAS COMPLEJA...
59K€
Cerrado
Información proyecto COMPLETE
Duración del proyecto: 64 meses
Fecha Inicio: 2022-12-01
Fecha Fin: 2028-04-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Systems and control engineers aim to master increasingly complex dynamical systems while including stronger performance, operational and energy constraints. As model-based control design remains the dominant paradigm, this results in an increasing need for nonlinear modeling. However, model interpretability and generalization capabilities form important roadblocks for a wide adaptation and applicability of nonlinear system identification methods.
Strong prior knowledge is given by existing models, provided by system designers and engineers, even though they do not capture all the nonlinear dynamics of the real-life system. These models are currently not accounted for during black-box system identification. COMPLETE aims to develop a comprehensive nonlinear system identification framework to obtain accurate and interpretable models of measured complex system dynamics by completing an approximate pre-existing model through black-box nonlinear system identification. New theory and algorithms are put in place to 1) provide model structures, algorithms and theory that flexibly interconnect the pre-existing model and the black-box completion 2) ensure that data-driven completion models are interpretable and preserve key system theoretic aspects 3) data-driven experiment design strategies to detect, quantify and localize model errors at low experimental cost.
These objectives are far beyond the actual abilities of system identification, lifting the model completion for dynamical systems from ad-hoc approaches to a systematic, flexible, theoretically supported framework. My leading expertise on structured nonlinear system identification, and recent proof-of-concept results ensure the feasibility of the project. The resulting system identification framework is applicable over a wide range of engineering disciplines (mechanical, electrical, biomedical) and provides system engineers with the necessary insight to guide them towards better solutions for tomorrow's industry.