Geometrically, this proposal is concerned primarily with Calabi--Yau threefolds, their (local) classification, their homological properties, various associated structures such as stability conditions and Frobenius manifolds, and...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
STRING
String theory and noncommutative geometry
100K€
Cerrado
CHaNGe
Categorical, Homological, and Non-commutative methods in Geo...
196K€
Cerrado
HIDRA
Homological Invariants of Deformations of Groups and Algebra...
211K€
Cerrado
CatDT
Categorified Donaldson Thomas Theory
1M€
Cerrado
NAMirror
Non archimedean Mirror Symmetry
1M€
Cerrado
Información proyecto MMiMMa
Duración del proyecto: 65 meses
Fecha Inicio: 2020-12-17
Fecha Fin: 2026-05-31
Líder del proyecto
UNIVERSITY OF GLASGOW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Geometrically, this proposal is concerned primarily with Calabi--Yau threefolds, their (local) classification, their homological properties, various associated structures such as stability conditions and Frobenius manifolds, and the resulting predictions across mirror symmetry. Our approach to these problems is through noncommutative algebra, and necessarily so. We will use techniques from contraction algebras and noncommutative resolutions to classify, using both theoretical and constructive methods, and in the process verify an amended version of a string theory prediction. We will use this to push forward curve-counting and derived category consequences and obstructions, and will work towards building a full database of 3-fold flops. On a parallel track, we will treat fundamental problems in noncommutative resolutions and their variants, and approach some of the founding conjectures in the area. We will tackle problems such as existence of MMAs through to more specific problems such as faithful actions and K(pi,1) through stability manifolds and tilting theory on preprojective algebras. We will furthermore merge all this into an emerging theory of Frobenius manifolds, SKMS, and schobers, and through this expand on recent work constructing mirrors to various flopping contractions.