Mixed phase clouds and climate MC2 from process level understanding to large...
Mixed phase clouds and climate MC2 from process level understanding to large scale impacts
The importance of mixed-phase clouds (i.e. clouds in which liquid and ice may co-exist) for weather and climate has become increasingly evident in recent years. We now know that a majority of the precipitation reaching Earth’s sur...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SIMPHAC
The impact of Secondary Ice processes on Mixed PHAse Clouds...
153K€
Cerrado
UNLL08-3E-007
Cambio Climático y sus efectos en el Atlántico Norte Subtrop...
182K€
Cerrado
SUBGRID-SCALE CLOUDS
Improving subgrid scale cloud parameterization in global cli...
100K€
Cerrado
RECAP
constRaining the EffeCts of Aerosols on Precipitation
2M€
Cerrado
RTI2018-097864-B-I00
SINERGIA EN LA OBTENCION DE PROPIEDADES AVANZADAS DE AEROSOL...
351K€
Cerrado
CGL2014-55976-R
EXPLORANDO LA FRONTERA ENTRE NUBE Y AEROSOL MEDIANTE OBSERVA...
90K€
Cerrado
Información proyecto MC2
Duración del proyecto: 62 meses
Fecha Inicio: 2017-12-21
Fecha Fin: 2023-02-28
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The importance of mixed-phase clouds (i.e. clouds in which liquid and ice may co-exist) for weather and climate has become increasingly evident in recent years. We now know that a majority of the precipitation reaching Earth’s surface originates from mixed-phase clouds, and the way cloud phase changes under global warming has emerged as a critically important climate feedback. Atmospheric aerosols may also have affected climate via mixed-phase clouds, but the magnitude and even sign of this effect is currently unknown. Satellite observations have recently revealed that cloud phase is misrepresented in global climate models (GCMs), suggesting systematic GCM biases in precipitation formation and cloud-climate feedbacks. Such biases give us reason to doubt GCM projections of the climate response to CO2 increases, or to changing atmospheric aerosol loadings. This proposal seeks to address the above issues, through a multi-angle and multi-tool approach: (i) By conducting field measurements of cloud phase at mid- and high latitudes, we seek to identify the small-scale structure of mixed-phase clouds. (ii) Large-eddy simulations will then be employed to identify the underlying physics responsible for the observed structures, and the field measurements will provide case studies for regional cloud-resolving modelling in order to test and revise state-of-the-art cloud microphysics parameterizations. (iii) GCMs, with revised microphysics parameterizations, will be confronted with cloud phase constraints available from space. (iv) Finally, the same GCMs will be used to re-evaluate the climate impact of mixed-phase clouds in terms of their contribution to climate forcings and feedbacks. Through this synergistic combination of tools for a multi-scale study of mixed-phase clouds, the proposed research has the potential to bring the field of climate science forward, from improved process-level understanding at small scales, to better climate change predictions on the global scale.