Miniaturized smart system for light stimulation and monitoring of wound healing
Chronic wounds represent a significant burden to patients, health care professionals, and health care systems, affecting over 40 million patients and creating costs of approximately 40 billion € annually. Goal of the project is th...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PHAS
Development of a new generation of bioengineered bandages
191K€
Cerrado
BIOCURE
Novel Biomaterial for Improved and Cost efficient Wound Heal...
71K€
Cerrado
NABIHEAL
ANTIMICROBIAL NANOSTRUCTURED BIOMATERIALS FOR COMPLEX WOUND...
5M€
Cerrado
PID2020-112737RB-I00
DISEÑO DE UN SISTEMA AVANZADO MULTIFUNCIONAL PARA LA LIBERAC...
110K€
Cerrado
InFact
Functional materials for fast diagnosis of wound infection
6M€
Cerrado
PTQ-16-08447
Biomateriales recubiertos de microcápsulas multifuncionales...
77K€
Cerrado
Información proyecto MEDILIGHT
Duración del proyecto: 43 meses
Fecha Inicio: 2014-12-04
Fecha Fin: 2018-07-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Chronic wounds represent a significant burden to patients, health care professionals, and health care systems, affecting over 40 million patients and creating costs of approximately 40 billion € annually. Goal of the project is the fabrication of a medical device for professional wound care. The device will use recently proven therapeutic effects of visible light to enhance the self-healing process and monitor the status and history of the wound during therapy. Light exposure in the red part of the spectrum (620-750nm) induces growth of keratinocytes and fibroblasts in deeper layers of the skin. The blue part of the spectrum (450–495nm) is known to have antibacterial effects predominantly at the surface layers of the skin. In order to be compliant with hygiene requirements the system will consist of two parts: 1. a disposable wound dressing with embedded optical waveguides and integrated sensors for the delivery of light and monitoring (temperature and blood oxygen) of the wound. 2. a soft and compliant electronic module for multiple use containing LEDs, a photodiode, a controller, analog data acquisition, a rechargeable battery, and a data transmission unit. Both parts of the device will be interconnected by a mechanically robust plug, enabling a low loss coupling of light into the waveguide structures and electrical interconnection to the sensors. The status of the wound will be monitored with temporal and low level spatial resolution. The electronic module will be optimized for functionality and user comfort, combining leading edge heterogeneous integration technologies (PCB embedding) and stretchable electronics approaches. The detailed effects of light-exposure schemes will be explored and backed by in-vitro and in-vivo animal studies. Results will be used to develop smart algorithms and implement it into respective programs and feedback loops of the device.