Microstructure Informed Numerical Framework for Predicting the Response of TBC S...
Microstructure Informed Numerical Framework for Predicting the Response of TBC System
Among conventional power generation systems, gas turbine (GT)-based technologies provide the optimal balance between reliability, affordability, and, most importantly, flexibility in the face of a substantial proportion of variabl...
ver más
31/08/2026
IMDEA MATERIALES
181K€
Presupuesto del proyecto: 181K€
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2024-04-10
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto MIM-TBC
Duración del proyecto: 28 meses
Fecha Inicio: 2024-04-10
Fecha Fin: 2026-08-31
Líder del proyecto
IMDEA MATERIALES
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
| 9M€
Presupuesto del proyecto
181K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Among conventional power generation systems, gas turbine (GT)-based technologies provide the optimal balance between reliability, affordability, and, most importantly, flexibility in the face of a substantial proportion of variable renewable energies (VREs). In response to intermittent VREs, the operational profile of GT will shift towards higher ramp rates, more frequent peak-load/base-load cyclic operations, and a greater number of start-ups which will negatively affect the life cycle of hot components. On the other hand, to enhance efficiency, the turbine inlet temperature should increase from the current 1500℃ to 1800℃, exceeding the temperature limit of high-performance superalloys (1300℃) and imparting the severest thermo-mechanical loading on hot gas path components being coated with indispensable overlay or diffusion type thermal barrier coating (TBC) systems. Owing to the multifaceted and severe consequences of protective coatings failure, research to predict interrelated deformation, chemo-thermo-mechanical degradation and subsequent failure of TBC systems particularly under high-temperature thermal cycling is a top priority. Experimental durability tests, which are primarily based on empirical fitting of coatings mass loss data, are incapable of predicting the lifetime and long-term degradation of a TBC system. In light of the above circumstances, it is extremely beneficial to develop comprehensive modeling techniques that are capable of replacing time-intensive and limited-scope experimental endeavors. Among the different options available, MCrAlY-YSZ (with M being Ni or Co) arises as the most common protective coating system. MIM-TBC project aims at developing a mechanistic and microstructure-sensitive framework for predicting deformation, damage progression, and lifetime of the MCrAlY-YSZ TBC system. Specifically, the framework will be organized to achieve the following specific objectives: O1) A microstructure-sensitive framework for deformation analysis of MCrAlY-based TBC system under thermal cycling O2) Physically-based lifetime prediction of MCrAlY-based TBC system under thermal cycling.