Innovating Works

3M-2MNP-FE

Financiado
Microscopic, Mesoscopic, and Macroscopic Approaches to Mitigate Micro- and Nano-...
Microscopic, Mesoscopic, and Macroscopic Approaches to Mitigate Micro- and Nano-plastics in the Food and Environment The proposal, Microscopic, Mesoscopic, and Macroscopic Approaches to Mitigate Micro- and Nano-plastics in the Food and Environment (3M-2MNP-FE) is an MSCA PF proposal to be hosted by the University of Malta for 24 months, wherein... The proposal, Microscopic, Mesoscopic, and Macroscopic Approaches to Mitigate Micro- and Nano-plastics in the Food and Environment (3M-2MNP-FE) is an MSCA PF proposal to be hosted by the University of Malta for 24 months, wherein Dr. Floirendo Flores will be supervised by Dr. Sophie Marie Briffa. Following the 24-month fellowship, a non-academic placement (NAP) has been secured with commitment from Dr. Adrian C. Love (ACL) from AquaBioTech Group (ABT). Dr. Flores conducts research on microencapsulation of bioactive compounds and simulated digestion, whereas Dr. Briffa specializes on nanoparticles chemistry, synthesis, characterization, and environmental behavior. The co-mentor, Dr. Melissa Marie Formosa, has in vivo studies involving zebrafish larvae and currently has supply agreement with ABT. Plastic packaging polymers are a necessary component of food products that are often discarded in municipal solid waste treatment plants and landfills resulting in varying levels of degradation products. The degradation products are usually recalcitrant micro- and nanoparticles (MNPs) that enter aquatic environments and contaminate biota with potentially adverse health outcomes. In view of the pressing need to mitigate the environmental risks upon exposure to MNPs, an interdisciplinary approach combining polymer chemistry, food, nutritional, and animal sciences is being proposed to develop an environmentally sound enzymatic technology to treat MNPs. Enzymatic treatment can change MNP size and enhance biodegradability. New knowledge will be generated on in vitro and in vivo changes on enzyme-based gastrointestinal and antioxidant systems following exposure to enzymatically treated MNPs. Implementation of the work packages will help answer the research question: Does exposure to enzymatically treated MNPs co-digested with food reduce the toxicity risks of MNPs? Results of this project can lead to a new sustainable pollution control strategy. ver más
31/12/2026
222K€
Duración del proyecto: 34 meses Fecha Inicio: 2024-02-14
Fecha Fin: 2026-12-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-02-14
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 222K€
Líder del proyecto
UNIVERSITA TA MALTA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5