Microfluidic Tuning of Individual Nanoparticles to Understand and Improve Electr...
Microfluidic Tuning of Individual Nanoparticles to Understand and Improve Electrocatalysis
Transition metal based nanoparticles (NPs) are envisioned as viable alternatives to the scarce precious metal based catalysts used today for renewable energy conversion. Yet, probing their intrinsic activity to establish property-...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
CASCAT
Catalytic cascade reactions. From fundamentals of nanozymes...
2M€
Cerrado
PID2020-116093RB-C43
NANOSCOPIAS ELECTRONICAS AVANZADAS APLICADAS A LA INVESTIGAC...
206K€
Cerrado
CO2-CAT-ALOG
Surface and sub surface modified nano electrocatalysts for t...
150K€
Cerrado
CO2-CAT-ALOG
Surface and sub surface modified nano electrocatalysts for t...
150K€
Cerrado
MENACE-CO2
MEtal NAnoClusters for Electrocatalytic CO2 conversion
173K€
Cerrado
Información proyecto MITICAT
Duración del proyecto: 70 meses
Fecha Inicio: 2020-08-20
Fecha Fin: 2026-06-30
Líder del proyecto
RUHRUNIVERSITAET BOCHUM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Transition metal based nanoparticles (NPs) are envisioned as viable alternatives to the scarce precious metal based catalysts used today for renewable energy conversion. Yet, probing their intrinsic activity to establish property-activity relations and so to smartly design superior catalysts, is impeded by two limitations of existing electrocatalytic techniques. First, the integral assessment of ensembles of non-identical NPs prohibits the identification of intrinsic activity differences. Second, the unknown effects of additives required analyzing the activity of often poorly conductive transition metal oxides, e.g. during the oxygen evolution reaction (OER), prohibit the access to quantitative data and comparable benchmarks. Very recently, we have proposed single NP electrochemistry to overcome both limitations. We demonstrated that the electrocatalytic OER response of individual CoFe2O4 NPs can be assessed in the absence of additives. However, we have not been able to extract property-activity relations, as NP characterization was limited to ex situ data. The groundbreaking strategy of this work is to combine intrinsic activity and physical property measurements of individual NPs. Physical characterization will comprise different online and ex situ methods to gain comprehensive property information. Numerical simulations will allow us to extract quantitative kinetic data from the electrochemical studies, allowing us to provide quantitative benchmarks of intrinsic catalyst performance. Cycling of NPs in a microfluidic platform will enable degradation studies and systematic modification on the fly. Moving towards application conditions, catalyst-support interactions will be studied by stepwise immobilization of catalysts on substrates. As a result of revealing intrinsic property-activity relations in electrocatalysis and of elucidating catalyst-support interactions, we will gain the understanding urgently needed to disruptively change electrocatalyst devolopment.