Microbubble driven multimodal imaging and theranostics for gliomas
Microbubbles (MBs) are used as contrast agent in ultrasound (US) imaging for a variety of tumours while little has been done for glioblastomas, a rare cancer. Intraoperative Contrast-Enhanced US-imaging (CEUS) using lipidic MBs ho...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Microbubbles (MBs) are used as contrast agent in ultrasound (US) imaging for a variety of tumours while little has been done for glioblastomas, a rare cancer. Intraoperative Contrast-Enhanced US-imaging (CEUS) using lipidic MBs hold promises in increasing extent of resection of such tumors. Furthermore, MBs gained recently interest as a delivery system for drugs. We will develop a new generation of multimodal MBs, acting simultaneously as contrast agent for Magnetic Resonance Imaging (MRI), CEUS and intra-operative fluorescence for multimodal real-time image-guided resection of glioblastomas. We plan to transform MBs by replacing air with perfluorcarbon gas and/or attaching super-paramagnetic-iron-oxide nanoparticles for MRI visualization. We will also engineer MBs with RGD-motif to adhere selectively to pathological endothelial integrins and with near-infrared fluorophores for simultaneous US deep tissue imaging and direct microscopic tumour visualization to maximize resection. A software will be developed for integration of preoperative MRI, intraoperative US and microscopic imaging. We will focus on lipidic and polymeric MBs. Lipidic MBs are approved for clinical use; therefore, once modified, more easily translatable into clinical applications to reach a feasibility study on patients. In addition, we will improve multifunctional, polymer-based MBs. Multifunctional-stabilized-polymer-MBs are more stable and more versatile to be complexed with different molecules or nanoparticles as compared to lipidic Mbs and will be designed as a platform for delivering standard and/or experimental chemotherapeutic drugs to the tumour, acting as an innovative way for local targeting and delivering any kind of agent to a specific target, in a safe and controlled fashion. This would be a big step forward in the field of personalized medicine, moving standard MG image-guided treatment towards more effective, safer, molecular-based tailored interventions to specific patients.