Descripción del proyecto
Microbiota dysbiosis is associated with chronic inflammatory diseases such as allergy, inflammatory bowel diseases, cancer and metabolism-related disorders. It has been reported that exposure to microbial and dietary components early in life may program the immune system to develop tolerance or susceptibility to chronic inflammatory diseases with age. We have recently shown that vigorous immune response induced by gut microbiota at weaning, prevents the development and exacerbation of chronic inflammatory diseases in adult mice. Such immune response is termed the weaning reaction. Antibiotic exposure and/or excessive fats intake during this critical window dysregulate the weaning reaction and increase the subsequent susceptibility to develop immunopathology. However, our current knowledge of the biological processes underlying the weaning reaction remains largely unknown. Here we aim to determine the biological processes of the weaning reaction and define the microbial and nutritional signatures at weaning that predict the susceptibility to adult pathology. These aims will be assessed using high-throughput sequencing, machine-learning algorithms and axenic and gnotobiotic mice models. Our project will help deciphering how nutrition and microbiota at weaning orchestrate the immune system development and impact adult chronic inflammatory pathologies susceptibility.