Micro-behaviors Recognitions through Nonverbal Signals
Micro-behaviors are subtle, often unconscious actions, expressions, or gestures that individuals exhibit in their daily lives. They are often shown in nonverbal communication. Understanding these subtle cues and endowing future ar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MAHNOB
Multimodal Analysis of Human Nonverbal Behaviour in Real Wor...
2M€
Cerrado
FACEVAR
Face Recognition Understanding the role of within person va...
1M€
Cerrado
EIN2019-102990
COMPUTACION DE PERSONALIDAD A PARTIR DE SEÑALES AUDIO-VISUAL...
10K€
Cerrado
SEMAINE
Sustained Emotionally coloured Machine human Interaction usi...
4M€
Cerrado
MULTISIMO
MULTImodal and MULTIparty Social Interactions MOdelling
176K€
Cerrado
HOL-DEEP-SENSE
Holistic Deep Modelling for User Recognition and Affective S...
200K€
Cerrado
Información proyecto MIRROR
Duración del proyecto: 35 meses
Fecha Inicio: 2024-04-24
Fecha Fin: 2027-03-31
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
196K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Micro-behaviors are subtle, often unconscious actions, expressions, or gestures that individuals exhibit in their daily lives. They are often shown in nonverbal communication. Understanding these subtle cues and endowing future artificial intelligence agents this capability could enhance our interactions and relationships. However, current automated systems cannot recognize micro-behaviors. To this end, I will address this gap using multimodal perception and deep learning to automatically recognize micro-behaviors through nonverbal signals such as facial expressions and body language. I will focus on the development of context-aware and privacy-preserving machine learning methods that are robust towards missing data.