Micro Technologies and Heterogeneous Advanced Platforms for Implantable Medical...
Micro Technologies and Heterogeneous Advanced Platforms for Implantable Medical Systems
The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this develop...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-118154GB-I00
APROXIMACIONES ANALITICAS INNOVADORAS DE BIOSENSADO BASADAS...
237K€
Cerrado
CTQ2012-36165
MINIATURIZACION, INTEGRACION Y PARALELIZACION DE ENSAYOS QUI...
170K€
Cerrado
BrainWatch
Transient micromachined pressure monitoring implants for chr...
157K€
Cerrado
PTQ2023-012955
Desarrollo de una plataforma microfluídica con sensores inte...
84K€
Cerrado
CONSENSE
A game change in continuous biosensing Molecularly engineer...
4M€
Cerrado
CTQ2016-75749-R
BIOSENSORES HOLOGRAFICOS. PRUEBA DE CONCEPTO Y DEMOSTRACION...
288K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The μTHALYS project aims to create a technology platform that enables a next revolution by bringing microsystem technology to the next level in terms of integration, miniaturization and multifunctionality and applying this development to address pending needs in health care.
Several breakthrough materials, basic concepts and fabrication techniques will be developed based on silicon or going far beyond silicon: At the wafer scale integration level, integration of advanced polymers (optics, conductive polymers, ionic polymer-metal composites) will be studied. These will be applied in several novel subminiature actuator and sensor devices with broad application potential, amongst which microfluidic systems, pressure sensing arrays,
In order to come to complex 3D systems combining modalities as optics, microfluidics, actuators and electronics, advanced device level fabrication and hybrid assembly technologies will be studied as well. Furthermore, the methods for packaging implants (flex/stretch interconnect technology, advanced interposers,…) will be pushed far beyond the current state of the art. The adoption of soft, and even
bioresorbable materials for packaging and interconnects will spectacularly improve the human-implant interface.
Another important research line pursued is the study of ultra-low power electronics for medical implants: sensor interfacing, A/D conversion, signal processing, data communication and power transfer.
These fundamental research activities will lead to many applied projects and valorization activities during and long afterwards the end of this grant. In the project itself, two main medical applications are targeted directly: a urinary pacemaker to prevent incontinence, and a new generation of implantable electrodes for neurology.